Fusion Protein Technologies for Biopharmaceuticals

Fusion Protein Technologies for Biopharmaceuticals

Author: Stefan R. Schmidt

Publisher: John Wiley & Sons

Published: 2013-01-28

Total Pages: 995

ISBN-13: 1118354583

DOWNLOAD EBOOK

The state of the art in biopharmaceutical FUSION PROTEIN DESIGN Fusion proteins belong to the most lucrative biotech drugs—with Enbrel® being one of the best-selling biologics worldwide. Enbrel® represents a milestone of modern therapies just as Humulin®, the first therapeutic recombinant protein for human use, approved by the FDA in 1982 and Orthoclone® the first monoclonal antibody reaching the market in 1986. These first generation molecules were soon followed by a plethora of recombinant copies of natural human proteins, and in 1998, the first de novo designed fusion protein was launched. Fusion Protein Technologies for Biopharmaceuticals examines the state of the art in developing fusion proteins for biopharmaceuticals, shedding light on the immense potential inherent in fusion protein design and functionality. A wide pantheon of international scientists and researchers deliver a comprehensive and complete overview of therapeutic fusion proteins, combining the success stories of marketed drugs with the dynamic preclinical and clinical research into novel drugs designed for as yet unmet medical needs. The book covers the major types of fusion proteins—receptor-traps, immunotoxins, Fc-fusions and peptibodies—while also detailing the approaches for developing, delivering, and improving the stability of fusion proteins. The main body of the book contains three large sections that address issues key to this specialty: strategies for extending the plasma half life, the design of toxic proteins, and utilizing fusion proteins for ultra specific targeting. The book concludes with novel concepts in this field, including examples of highly relevant multifunctional antibodies. Detailing the innovative science, commercial realities, and brilliant potential of fusion protein therapeutics, Fusion Protein Technologies for Biopharmaceuticals is a must for pharmaceutical scientists, biochemists, medicinal chemists, molecular biologists, pharmacologists, and genetic engineers interested in determining the shape of innovation in the world of biopharmaceuticals.


Book Synopsis Fusion Protein Technologies for Biopharmaceuticals by : Stefan R. Schmidt

Download or read book Fusion Protein Technologies for Biopharmaceuticals written by Stefan R. Schmidt and published by John Wiley & Sons. This book was released on 2013-01-28 with total page 995 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state of the art in biopharmaceutical FUSION PROTEIN DESIGN Fusion proteins belong to the most lucrative biotech drugs—with Enbrel® being one of the best-selling biologics worldwide. Enbrel® represents a milestone of modern therapies just as Humulin®, the first therapeutic recombinant protein for human use, approved by the FDA in 1982 and Orthoclone® the first monoclonal antibody reaching the market in 1986. These first generation molecules were soon followed by a plethora of recombinant copies of natural human proteins, and in 1998, the first de novo designed fusion protein was launched. Fusion Protein Technologies for Biopharmaceuticals examines the state of the art in developing fusion proteins for biopharmaceuticals, shedding light on the immense potential inherent in fusion protein design and functionality. A wide pantheon of international scientists and researchers deliver a comprehensive and complete overview of therapeutic fusion proteins, combining the success stories of marketed drugs with the dynamic preclinical and clinical research into novel drugs designed for as yet unmet medical needs. The book covers the major types of fusion proteins—receptor-traps, immunotoxins, Fc-fusions and peptibodies—while also detailing the approaches for developing, delivering, and improving the stability of fusion proteins. The main body of the book contains three large sections that address issues key to this specialty: strategies for extending the plasma half life, the design of toxic proteins, and utilizing fusion proteins for ultra specific targeting. The book concludes with novel concepts in this field, including examples of highly relevant multifunctional antibodies. Detailing the innovative science, commercial realities, and brilliant potential of fusion protein therapeutics, Fusion Protein Technologies for Biopharmaceuticals is a must for pharmaceutical scientists, biochemists, medicinal chemists, molecular biologists, pharmacologists, and genetic engineers interested in determining the shape of innovation in the world of biopharmaceuticals.


Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals

Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals

Author: Feroz Jameel

Publisher: John Wiley & Sons

Published: 2010-07-13

Total Pages: 986

ISBN-13: 0470595876

DOWNLOAD EBOOK

A real-world guide to the production and manufacturing of biopharmaceuticals While much has been written about the science of biopharmaceuticals, there is a need for practical, up-to-date information on key issues at all stages of developing and manufacturing commercially viable biopharmaceutical drug products. This book helps fill the gap in the field, examining all areas of biopharmaceuticals manufacturing, from development and formulation to production and packaging. Written by a group of experts from industry and academia, the book focuses on real-world methods for maintaining product integrity throughout the commercialization process, clearly explaining the fundamentals and essential pathways for all development stages. Coverage includes: Research and early development phase appropriate approaches for ensuring product stability Development of commercially viable formulations for liquid and lyophilized dosage forms Optimal storage, packaging, and shipping methods Case studies relating to therapeutic monoclonal antibodies, recombinant proteins, and plasma fractions Useful analysis of successful and failed products Formulation and Process Development Strategies for Manufacturing Biopharma-ceuticals is an essential resource for scientists and engineers in the pharmaceutical and biotech industries, for government and regulatory agencies, and for anyone with an interest in the latest developments in the field.


Book Synopsis Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals by : Feroz Jameel

Download or read book Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals written by Feroz Jameel and published by John Wiley & Sons. This book was released on 2010-07-13 with total page 986 pages. Available in PDF, EPUB and Kindle. Book excerpt: A real-world guide to the production and manufacturing of biopharmaceuticals While much has been written about the science of biopharmaceuticals, there is a need for practical, up-to-date information on key issues at all stages of developing and manufacturing commercially viable biopharmaceutical drug products. This book helps fill the gap in the field, examining all areas of biopharmaceuticals manufacturing, from development and formulation to production and packaging. Written by a group of experts from industry and academia, the book focuses on real-world methods for maintaining product integrity throughout the commercialization process, clearly explaining the fundamentals and essential pathways for all development stages. Coverage includes: Research and early development phase appropriate approaches for ensuring product stability Development of commercially viable formulations for liquid and lyophilized dosage forms Optimal storage, packaging, and shipping methods Case studies relating to therapeutic monoclonal antibodies, recombinant proteins, and plasma fractions Useful analysis of successful and failed products Formulation and Process Development Strategies for Manufacturing Biopharma-ceuticals is an essential resource for scientists and engineers in the pharmaceutical and biotech industries, for government and regulatory agencies, and for anyone with an interest in the latest developments in the field.


Biophysical Characterization of Proteins in Developing Biopharmaceuticals

Biophysical Characterization of Proteins in Developing Biopharmaceuticals

Author: Damian J. Houde

Publisher: Elsevier

Published: 2019-11-13

Total Pages: 586

ISBN-13: 0444641742

DOWNLOAD EBOOK

Biophysical Characterization of Proteins in Developing Biopharmaceuticals, Second Edition, presents the latest on the analysis and characterization of the higher-order structure (HOS) or conformation of protein based drugs. Starting from the very basics of protein structure, this book explains the best way to achieve this goal using key methods commonly employed in the biopharmaceutical industry. This book will help today’s industrial scientists plan a career in this industry and successfully implement these biophysical methodologies. This updated edition has been fully revised, with new chapters focusing on the use of chromatography and electrophoresis and the biophysical characterization of very large biopharmaceuticals. In addition, best practices of applying statistical analysis to biophysical characterization data is included, along with practical issues associated with the concept of a biopharmaceutical’s developability and the technical decision-making process needed when dealing with biophysical characterization data. Presents basic protein characterization methods and tools applicable to (bio)pharmaceutical research and development Highlights the capabilities and limitations of each technique Discusses the underlining science of each tool Empowers industrial biophysical chemists by providing a roadmap for applying biophysical tools Outlines the needs for new characterization and analytical tools in the biopharmaceutical industry


Book Synopsis Biophysical Characterization of Proteins in Developing Biopharmaceuticals by : Damian J. Houde

Download or read book Biophysical Characterization of Proteins in Developing Biopharmaceuticals written by Damian J. Houde and published by Elsevier. This book was released on 2019-11-13 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophysical Characterization of Proteins in Developing Biopharmaceuticals, Second Edition, presents the latest on the analysis and characterization of the higher-order structure (HOS) or conformation of protein based drugs. Starting from the very basics of protein structure, this book explains the best way to achieve this goal using key methods commonly employed in the biopharmaceutical industry. This book will help today’s industrial scientists plan a career in this industry and successfully implement these biophysical methodologies. This updated edition has been fully revised, with new chapters focusing on the use of chromatography and electrophoresis and the biophysical characterization of very large biopharmaceuticals. In addition, best practices of applying statistical analysis to biophysical characterization data is included, along with practical issues associated with the concept of a biopharmaceutical’s developability and the technical decision-making process needed when dealing with biophysical characterization data. Presents basic protein characterization methods and tools applicable to (bio)pharmaceutical research and development Highlights the capabilities and limitations of each technique Discusses the underlining science of each tool Empowers industrial biophysical chemists by providing a roadmap for applying biophysical tools Outlines the needs for new characterization and analytical tools in the biopharmaceutical industry


Biobetters

Biobetters

Author: Amy Rosenberg

Publisher: Springer

Published: 2015-08-21

Total Pages: 384

ISBN-13: 1493925431

DOWNLOAD EBOOK

“Biobetters: Protein Engineering to Approach the Curative” discusses the optimization of protein therapeutic products for treatment of human diseases. It is based on the fact that though numerous important therapeutic protein products have been developed for life threatening and chronic diseases that possess acceptable safety and efficacy profiles, these products have generally not been reexamined and modified for an improved clinical performance, with enhancements both to safety and efficacy profiles. Advances in protein engineering, coupled with greatly enhanced understanding of critical product quality attributes for efficacy and safety, make it possible to optimize predecessor products for clinical performance, thereby enhancing patient quality of life and with the potential for great savings in health care costs. Yet despite such knowledge, there is little movement towards such modifications. This book examines engineering protein therapeutic products such that they exhibit an optimal, not just an adequate, clinical performance profile. Two product classes, therapeutic enzymes for lysosomal storage diseases (enzyme replacement therapies, ERT) and monoclonal antibodies (mAbs), are used as examples of what modifications to such proteins could be made to enhance clinical performance, “closer to a cure” as it were. For ERT, the key to optimizing clinical performance is to ensure the ERT is endowed with moieties that target the protein to the relevant target tissue. Thus, for Gaucher Disease, our best example of how to optimize an ERT to address a disease that manifests in specific target tissues (macrophages and monocytes), the enzyme has been extensively modified to target macrophages. For diseases such as Pompe Disease, largely a disorder of muscle, optimal performance of ERT will depend on endowing the enzyme with the ability to be taken up via the Mannose 6 Phosphate Receptor, and so one of the chapters in the book will discuss such approaches. Moreover, a major failure of biotechnology based products is to gain access to the CNS, a key target tissue in numerous diseases. Thus, a chapter has been devoted to strategies to access the CNS. Additionally, immune responses to therapeutic proteins can be highly problematic, eliminating the efficacy of life saving or highly effective protein therapeutics. This is especially poignant in the case of Pompe Disease wherein great improvement in muscle strength and functionality is lost following development of an immune response to the ERT with consequent patient deterioration and death. Thus, a chapter regarding protein engineering, as well as other non-clinical approaches to diminishing immunogenicity is a valuable part of the book. Monoclonal antibodies (mAbs) can be engineered to bind targets relevant to a wide variety of diseases; binding affinity, however, is only part of the equation and one of the chapters will present a molecular assessment approach that balances affinity with pharmacokinetics and manufacturability. As with other proteins immunogenicity can be problematic, being responsible for loss of efficacy of anti-TNF mAbs, often after prolonged successful treatment. The authors will also share their perspective on the consequences of physico-chemical modifications occurring to mAbs once they reach the circulation or their target, a research area open to further development from a protein engineering as well as analytical perspective. This book will also discuss novel platforms for protein therapeutics, technologies that exceed mAbs with respect to potency, and hence, potentially efficacy. These platforms consist largely of repeat domain proteins with very high affinity for their target ligands, but while potentially more efficacious, immunogenicity may be a major problem limiting use. The economics surrounding the issue of biobetters is another high-profile issue - this final chapter will explore the incentives and disincentives for developing biobetters and consider incentives that might make their pursuit more rewarding.


Book Synopsis Biobetters by : Amy Rosenberg

Download or read book Biobetters written by Amy Rosenberg and published by Springer. This book was released on 2015-08-21 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Biobetters: Protein Engineering to Approach the Curative” discusses the optimization of protein therapeutic products for treatment of human diseases. It is based on the fact that though numerous important therapeutic protein products have been developed for life threatening and chronic diseases that possess acceptable safety and efficacy profiles, these products have generally not been reexamined and modified for an improved clinical performance, with enhancements both to safety and efficacy profiles. Advances in protein engineering, coupled with greatly enhanced understanding of critical product quality attributes for efficacy and safety, make it possible to optimize predecessor products for clinical performance, thereby enhancing patient quality of life and with the potential for great savings in health care costs. Yet despite such knowledge, there is little movement towards such modifications. This book examines engineering protein therapeutic products such that they exhibit an optimal, not just an adequate, clinical performance profile. Two product classes, therapeutic enzymes for lysosomal storage diseases (enzyme replacement therapies, ERT) and monoclonal antibodies (mAbs), are used as examples of what modifications to such proteins could be made to enhance clinical performance, “closer to a cure” as it were. For ERT, the key to optimizing clinical performance is to ensure the ERT is endowed with moieties that target the protein to the relevant target tissue. Thus, for Gaucher Disease, our best example of how to optimize an ERT to address a disease that manifests in specific target tissues (macrophages and monocytes), the enzyme has been extensively modified to target macrophages. For diseases such as Pompe Disease, largely a disorder of muscle, optimal performance of ERT will depend on endowing the enzyme with the ability to be taken up via the Mannose 6 Phosphate Receptor, and so one of the chapters in the book will discuss such approaches. Moreover, a major failure of biotechnology based products is to gain access to the CNS, a key target tissue in numerous diseases. Thus, a chapter has been devoted to strategies to access the CNS. Additionally, immune responses to therapeutic proteins can be highly problematic, eliminating the efficacy of life saving or highly effective protein therapeutics. This is especially poignant in the case of Pompe Disease wherein great improvement in muscle strength and functionality is lost following development of an immune response to the ERT with consequent patient deterioration and death. Thus, a chapter regarding protein engineering, as well as other non-clinical approaches to diminishing immunogenicity is a valuable part of the book. Monoclonal antibodies (mAbs) can be engineered to bind targets relevant to a wide variety of diseases; binding affinity, however, is only part of the equation and one of the chapters will present a molecular assessment approach that balances affinity with pharmacokinetics and manufacturability. As with other proteins immunogenicity can be problematic, being responsible for loss of efficacy of anti-TNF mAbs, often after prolonged successful treatment. The authors will also share their perspective on the consequences of physico-chemical modifications occurring to mAbs once they reach the circulation or their target, a research area open to further development from a protein engineering as well as analytical perspective. This book will also discuss novel platforms for protein therapeutics, technologies that exceed mAbs with respect to potency, and hence, potentially efficacy. These platforms consist largely of repeat domain proteins with very high affinity for their target ligands, but while potentially more efficacious, immunogenicity may be a major problem limiting use. The economics surrounding the issue of biobetters is another high-profile issue - this final chapter will explore the incentives and disincentives for developing biobetters and consider incentives that might make their pursuit more rewarding.


Antibody Fusion Proteins

Antibody Fusion Proteins

Author: Steven M. Chamow

Publisher: Wiley-Liss

Published: 1999-04-13

Total Pages: 312

ISBN-13: 9780471183587

DOWNLOAD EBOOK

Thoroughly detailed and illustrated, this book examines the construction, properties, applications, and problems associated with specific types of fusion molecules used in clinical and research medicine. The editors present an overview of the field, followed by nine chapters divided into two general sections based on the two primary parts of the antibody molecule: Fab fusion proteins and Fc fusion proteins. In addition, numerous renowned scientists in the field have contributed outlines demonstrating man-made molecules that will be required not only to overcome the limitations of monoclonal antibodies, but also to extend the principle of selective targeting. Divided into specific, accessible sections, Antibody Fusion Proteins includes: * Chapters describing Fc fusion proteins, as well as several classes of antigen-binding proteins * Complete details on the design and molecular construction of genetically engineered fusion molecules * Useful information on molecular purification, large-scale production, practical applications, and their therapeutic potential * The latest data on forming fusion proteins with toxins, cytokines, or enzymes that can activate a prodrug


Book Synopsis Antibody Fusion Proteins by : Steven M. Chamow

Download or read book Antibody Fusion Proteins written by Steven M. Chamow and published by Wiley-Liss. This book was released on 1999-04-13 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly detailed and illustrated, this book examines the construction, properties, applications, and problems associated with specific types of fusion molecules used in clinical and research medicine. The editors present an overview of the field, followed by nine chapters divided into two general sections based on the two primary parts of the antibody molecule: Fab fusion proteins and Fc fusion proteins. In addition, numerous renowned scientists in the field have contributed outlines demonstrating man-made molecules that will be required not only to overcome the limitations of monoclonal antibodies, but also to extend the principle of selective targeting. Divided into specific, accessible sections, Antibody Fusion Proteins includes: * Chapters describing Fc fusion proteins, as well as several classes of antigen-binding proteins * Complete details on the design and molecular construction of genetically engineered fusion molecules * Useful information on molecular purification, large-scale production, practical applications, and their therapeutic potential * The latest data on forming fusion proteins with toxins, cytokines, or enzymes that can activate a prodrug


Single-Use Technology in Biopharmaceutical Manufacture

Single-Use Technology in Biopharmaceutical Manufacture

Author: Regine Eibl

Publisher: John Wiley & Sons

Published: 2019-07-24

Total Pages: 672

ISBN-13: 1119477778

DOWNLOAD EBOOK

Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.


Book Synopsis Single-Use Technology in Biopharmaceutical Manufacture by : Regine Eibl

Download or read book Single-Use Technology in Biopharmaceutical Manufacture written by Regine Eibl and published by John Wiley & Sons. This book was released on 2019-07-24 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.


Biopharmaceuticals

Biopharmaceuticals

Author: Ming-Kung Yeh

Publisher: BoD – Books on Demand

Published: 2018-09-19

Total Pages: 140

ISBN-13: 1789237181

DOWNLOAD EBOOK

Biopharmaceuticals are derived from biological sources, either live organisms or their active components; nowadays, they are mainly produced by biotechnologies. Biopharmaceuticals are extensively used in the treatment of various diseases such as cardiovascular, metabolic, neurological diseases, cancer, and others for which there are no available therapeutic methods. With the advance of science, biopharmaceuticals have revolutionized the treatment, prevention, and diagnosis of many patients with disabling and life-threatening diseases. Innovative biopharmaceuticals definitely improve the life quality of patients and enhance the effectiveness of the healthcare system. This book encompasses the discovery, production, application, and regulation of biopharmaceuticals to demonstrate their research achievement, prospects, and challenges. We expect the significance of biopharmaceuticals to be revealed and emphasized by this book.


Book Synopsis Biopharmaceuticals by : Ming-Kung Yeh

Download or read book Biopharmaceuticals written by Ming-Kung Yeh and published by BoD – Books on Demand. This book was released on 2018-09-19 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biopharmaceuticals are derived from biological sources, either live organisms or their active components; nowadays, they are mainly produced by biotechnologies. Biopharmaceuticals are extensively used in the treatment of various diseases such as cardiovascular, metabolic, neurological diseases, cancer, and others for which there are no available therapeutic methods. With the advance of science, biopharmaceuticals have revolutionized the treatment, prevention, and diagnosis of many patients with disabling and life-threatening diseases. Innovative biopharmaceuticals definitely improve the life quality of patients and enhance the effectiveness of the healthcare system. This book encompasses the discovery, production, application, and regulation of biopharmaceuticals to demonstrate their research achievement, prospects, and challenges. We expect the significance of biopharmaceuticals to be revealed and emphasized by this book.


Cell Culture Engineering

Cell Culture Engineering

Author: Gyun Min Lee

Publisher: John Wiley & Sons

Published: 2020-01-13

Total Pages: 436

ISBN-13: 3527343342

DOWNLOAD EBOOK

Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.


Book Synopsis Cell Culture Engineering by : Gyun Min Lee

Download or read book Cell Culture Engineering written by Gyun Min Lee and published by John Wiley & Sons. This book was released on 2020-01-13 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.


Developability of Biotherapeutics

Developability of Biotherapeutics

Author: Sandeep Kumar

Publisher: CRC Press

Published: 2015-11-18

Total Pages: 297

ISBN-13: 1482246155

DOWNLOAD EBOOK

Biopharmaceuticals are emerging as frontline medicines to combat several life-threatening and chronic diseases. However, such medicines are expensive to develop and produce on a commercial scale, contributing to rising healthcare costs. Developability of Biotherapeutics: Computational Approaches describes applications of computational and molecular modeling techniques that improve the overall process of discovery and development by removing empiricism. The concept of developability involves making rational choices at the pre-clinical stages of biopharmaceutical drug development that could positively impact clinical outcomes. The book also addresses a general lack of awareness of the many different contributions that computation can make to biopharmaceutical drug development. This informative and practical reference is a valuable resource for professionals engaged in industrial research and development, scientists working with regulatory agencies, and pharmacy, medicine, and life science students and educators. It focuses primarily on the developability of monoclonal antibody candidates, but the principles described can also be extended to other modalities such as recombinant proteins, fusion proteins, antibody drug conjugates and vaccines. The book is organized into two sections. The first discusses principles and applications of computational approaches toward discovering and developing biopharmaceutical drugs. The second presents best practices in developability assessments of early-stage biopharmaceutical drug candidates. In addition to raising awareness of the promise of computational research, this book also discusses solutions required to improve the success rate of translating biologic drug candidates into products available in the clinic. As such, it is a rich source of information on current principles and practices as well as a starting point for finding innovative applications of computation towards biopharmaceutical drug development.


Book Synopsis Developability of Biotherapeutics by : Sandeep Kumar

Download or read book Developability of Biotherapeutics written by Sandeep Kumar and published by CRC Press. This book was released on 2015-11-18 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biopharmaceuticals are emerging as frontline medicines to combat several life-threatening and chronic diseases. However, such medicines are expensive to develop and produce on a commercial scale, contributing to rising healthcare costs. Developability of Biotherapeutics: Computational Approaches describes applications of computational and molecular modeling techniques that improve the overall process of discovery and development by removing empiricism. The concept of developability involves making rational choices at the pre-clinical stages of biopharmaceutical drug development that could positively impact clinical outcomes. The book also addresses a general lack of awareness of the many different contributions that computation can make to biopharmaceutical drug development. This informative and practical reference is a valuable resource for professionals engaged in industrial research and development, scientists working with regulatory agencies, and pharmacy, medicine, and life science students and educators. It focuses primarily on the developability of monoclonal antibody candidates, but the principles described can also be extended to other modalities such as recombinant proteins, fusion proteins, antibody drug conjugates and vaccines. The book is organized into two sections. The first discusses principles and applications of computational approaches toward discovering and developing biopharmaceutical drugs. The second presents best practices in developability assessments of early-stage biopharmaceutical drug candidates. In addition to raising awareness of the promise of computational research, this book also discusses solutions required to improve the success rate of translating biologic drug candidates into products available in the clinic. As such, it is a rich source of information on current principles and practices as well as a starting point for finding innovative applications of computation towards biopharmaceutical drug development.


Therapeutic Fc-Fusion Proteins

Therapeutic Fc-Fusion Proteins

Author: Steven M. Chamow

Publisher: John Wiley & Sons

Published: 2013-12-18

Total Pages: 345

ISBN-13: 3527675280

DOWNLOAD EBOOK

Edited by three pioneers in the field, each with longstanding experience in the biotech industry, and a skilled scientific writer, this is the first book to cover every step in the development and production of immunoglobulin Fc-fusion proteins as therapeutics for human disease: from choosing the right molecular design, to pre-clinical characterization of the purified product, through to batch optimization and quality control for large-scale cGMP production. The whole of the second part is devoted to case studies of Fc-fusion proteins that are now commercially successful products. In this section, the authors, several of whom were personally involved in clinical development of the products themselves, detail the product?s background and give insight into issues that were faced and how these issues were overcome during clinical development. This section also includes a chapter on promising new developments for the future. An invaluable resource for professionals already working on Fc-fusion proteins and an excellent and thorough introduction for physicians, researchers, and students entering the field.


Book Synopsis Therapeutic Fc-Fusion Proteins by : Steven M. Chamow

Download or read book Therapeutic Fc-Fusion Proteins written by Steven M. Chamow and published by John Wiley & Sons. This book was released on 2013-12-18 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by three pioneers in the field, each with longstanding experience in the biotech industry, and a skilled scientific writer, this is the first book to cover every step in the development and production of immunoglobulin Fc-fusion proteins as therapeutics for human disease: from choosing the right molecular design, to pre-clinical characterization of the purified product, through to batch optimization and quality control for large-scale cGMP production. The whole of the second part is devoted to case studies of Fc-fusion proteins that are now commercially successful products. In this section, the authors, several of whom were personally involved in clinical development of the products themselves, detail the product?s background and give insight into issues that were faced and how these issues were overcome during clinical development. This section also includes a chapter on promising new developments for the future. An invaluable resource for professionals already working on Fc-fusion proteins and an excellent and thorough introduction for physicians, researchers, and students entering the field.