Graph Theory: Quantum Walk

Graph Theory: Quantum Walk

Author: N.B. Singh

Publisher: N.B. Singh

Published:

Total Pages: 142

ISBN-13:

DOWNLOAD EBOOK

"Graph Theory: Quantum Walk" explores how quantum computing enhances our understanding and applications of graphs. From basic principles to advanced algorithms, the book shows how quantum mechanics revolutionizes computation in graph theory. Whether you're a student, researcher, or enthusiast, discover the exciting potential where quantum principles meet graph theory, offering new insights and computational strategies in this dynamic field.


Book Synopsis Graph Theory: Quantum Walk by : N.B. Singh

Download or read book Graph Theory: Quantum Walk written by N.B. Singh and published by N.B. Singh. This book was released on with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Graph Theory: Quantum Walk" explores how quantum computing enhances our understanding and applications of graphs. From basic principles to advanced algorithms, the book shows how quantum mechanics revolutionizes computation in graph theory. Whether you're a student, researcher, or enthusiast, discover the exciting potential where quantum principles meet graph theory, offering new insights and computational strategies in this dynamic field.


Quantum Walks and Search Algorithms

Quantum Walks and Search Algorithms

Author: Renato Portugal

Publisher: Springer

Published: 2018-08-20

Total Pages: 308

ISBN-13: 3319978136

DOWNLOAD EBOOK

The revised edition of this book offers an extended overview of quantum walks and explains their role in building quantum algorithms, in particular search algorithms. Updated throughout, the book focuses on core topics including Grover's algorithm and the most important quantum walk models, such as the coined, continuous-time, and Szedgedy's quantum walk models. There is a new chapter describing the staggered quantum walk model. The chapter on spatial search algorithms has been rewritten to offer a more comprehensive approach and a new chapter describing the element distinctness algorithm has been added. There is a new appendix on graph theory highlighting the importance of graph theory to quantum walks. As before, the reader will benefit from the pedagogical elements of the book, which include exercises and references to deepen the reader's understanding, and guidelines for the use of computer programs to simulate the evolution of quantum walks. Review of the first edition: “The book is nicely written, the concepts are introduced naturally, and many meaningful connections between them are highlighted. The author proposes a series of exercises that help the reader get some working experience with the presented concepts, facilitating a better understanding. Each chapter ends with a discussion of further references, pointing the reader to major results on the topics presented in the respective chapter.” - Florin Manea, zbMATH.


Book Synopsis Quantum Walks and Search Algorithms by : Renato Portugal

Download or read book Quantum Walks and Search Algorithms written by Renato Portugal and published by Springer. This book was released on 2018-08-20 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised edition of this book offers an extended overview of quantum walks and explains their role in building quantum algorithms, in particular search algorithms. Updated throughout, the book focuses on core topics including Grover's algorithm and the most important quantum walk models, such as the coined, continuous-time, and Szedgedy's quantum walk models. There is a new chapter describing the staggered quantum walk model. The chapter on spatial search algorithms has been rewritten to offer a more comprehensive approach and a new chapter describing the element distinctness algorithm has been added. There is a new appendix on graph theory highlighting the importance of graph theory to quantum walks. As before, the reader will benefit from the pedagogical elements of the book, which include exercises and references to deepen the reader's understanding, and guidelines for the use of computer programs to simulate the evolution of quantum walks. Review of the first edition: “The book is nicely written, the concepts are introduced naturally, and many meaningful connections between them are highlighted. The author proposes a series of exercises that help the reader get some working experience with the presented concepts, facilitating a better understanding. Each chapter ends with a discussion of further references, pointing the reader to major results on the topics presented in the respective chapter.” - Florin Manea, zbMATH.


Discrete Quantum Walks on Graphs and Digraphs

Discrete Quantum Walks on Graphs and Digraphs

Author: Chris Godsil

Publisher: Cambridge University Press

Published: 2023-01-12

Total Pages: 152

ISBN-13: 1009261703

DOWNLOAD EBOOK

Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory.


Book Synopsis Discrete Quantum Walks on Graphs and Digraphs by : Chris Godsil

Download or read book Discrete Quantum Walks on Graphs and Digraphs written by Chris Godsil and published by Cambridge University Press. This book was released on 2023-01-12 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory.


Random Walks and Diffusions on Graphs and Databases

Random Walks and Diffusions on Graphs and Databases

Author: Philipp Blanchard

Publisher: Springer Science & Business Media

Published: 2011-05-26

Total Pages: 271

ISBN-13: 364219592X

DOWNLOAD EBOOK

Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.


Book Synopsis Random Walks and Diffusions on Graphs and Databases by : Philipp Blanchard

Download or read book Random Walks and Diffusions on Graphs and Databases written by Philipp Blanchard and published by Springer Science & Business Media. This book was released on 2011-05-26 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.


Physical Implementation of Quantum Walks

Physical Implementation of Quantum Walks

Author: Kia Manouchehri

Publisher: Springer Science & Business Media

Published: 2013-08-23

Total Pages: 252

ISBN-13: 3642360149

DOWNLOAD EBOOK

Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of quantum, classical and hybrid technologies.


Book Synopsis Physical Implementation of Quantum Walks by : Kia Manouchehri

Download or read book Physical Implementation of Quantum Walks written by Kia Manouchehri and published by Springer Science & Business Media. This book was released on 2013-08-23 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of quantum, classical and hybrid technologies.


Discrete Quantum Walks on Graphs and Digraphs

Discrete Quantum Walks on Graphs and Digraphs

Author: Hanmeng Zhan

Publisher:

Published: 2018

Total Pages: 144

ISBN-13:

DOWNLOAD EBOOK

This thesis studies various models of discrete quantum walks on graphs and digraphs via a spectral approach. A discrete quantum walk on a digraph $X$ is determined by a unitary matrix $U$, which acts on complex functions of the arcs of $X$. Generally speaking, $U$ is a product of two sparse unitary matrices, based on two direct-sum decompositions of the state space. Our goal is to relate properties of the walk to properties of $X$, given some of these decompositions. We start by exploring two models that involve coin operators, one due to Kendon, and the other due to Aharonov, Ambainis, Kempe, and Vazirani. While $U$ is not defined as a function in the adjacency matrix of the graph $X$, we find exact spectral correspondence between $U$ and $X$. This leads to characterization of rare phenomena, such as perfect state transfer and uniform average vertex mixing, in terms of the eigenvalues and eigenvectors of $X$. We also construct infinite families of graphs and digraphs that admit the aforementioned phenomena. The second part of this thesis analyzes abstract quantum walks, with no extra assumption on $U$. We show that knowing the spectral decomposition of $U$ leads to better understanding of the time-averaged limit of the probability distribution. In particular, we derive three upper bounds on the mixing time, and characterize different forms of uniform limiting distribution, using the spectral information of $U$. Finally, we construct a new model of discrete quantum walks from orientable embeddings of graphs. We show that the behavior of this walk largely depends on the vertex-face incidence structure. Circular embeddings of regular graphs for which $U$ has few eigenvalues are characterized. For instance, if $U$ has exactly three eigenvalues, then the vertex-face incidence structure is a symmetric $2$-design, and $U$ is the exponential of a scalar multiple of the skew-symmetric adjacency matrix of an oriented graph. We prove that, for every regular embedding of a complete graph, $U$ is the transition matrix of a continuous quantum walk on an oriented graph.


Book Synopsis Discrete Quantum Walks on Graphs and Digraphs by : Hanmeng Zhan

Download or read book Discrete Quantum Walks on Graphs and Digraphs written by Hanmeng Zhan and published by . This book was released on 2018 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis studies various models of discrete quantum walks on graphs and digraphs via a spectral approach. A discrete quantum walk on a digraph $X$ is determined by a unitary matrix $U$, which acts on complex functions of the arcs of $X$. Generally speaking, $U$ is a product of two sparse unitary matrices, based on two direct-sum decompositions of the state space. Our goal is to relate properties of the walk to properties of $X$, given some of these decompositions. We start by exploring two models that involve coin operators, one due to Kendon, and the other due to Aharonov, Ambainis, Kempe, and Vazirani. While $U$ is not defined as a function in the adjacency matrix of the graph $X$, we find exact spectral correspondence between $U$ and $X$. This leads to characterization of rare phenomena, such as perfect state transfer and uniform average vertex mixing, in terms of the eigenvalues and eigenvectors of $X$. We also construct infinite families of graphs and digraphs that admit the aforementioned phenomena. The second part of this thesis analyzes abstract quantum walks, with no extra assumption on $U$. We show that knowing the spectral decomposition of $U$ leads to better understanding of the time-averaged limit of the probability distribution. In particular, we derive three upper bounds on the mixing time, and characterize different forms of uniform limiting distribution, using the spectral information of $U$. Finally, we construct a new model of discrete quantum walks from orientable embeddings of graphs. We show that the behavior of this walk largely depends on the vertex-face incidence structure. Circular embeddings of regular graphs for which $U$ has few eigenvalues are characterized. For instance, if $U$ has exactly three eigenvalues, then the vertex-face incidence structure is a symmetric $2$-design, and $U$ is the exponential of a scalar multiple of the skew-symmetric adjacency matrix of an oriented graph. We prove that, for every regular embedding of a complete graph, $U$ is the transition matrix of a continuous quantum walk on an oriented graph.


Discrete Quantum Walks on Graphs and Digraphs

Discrete Quantum Walks on Graphs and Digraphs

Author: Christopher David Godsil

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9781009261692

DOWNLOAD EBOOK

"Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory"--


Book Synopsis Discrete Quantum Walks on Graphs and Digraphs by : Christopher David Godsil

Download or read book Discrete Quantum Walks on Graphs and Digraphs written by Christopher David Godsil and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory"--


Random Walks on Infinite Graphs and Groups

Random Walks on Infinite Graphs and Groups

Author: Wolfgang Woess

Publisher: Cambridge University Press

Published: 2000-02-13

Total Pages: 350

ISBN-13: 0521552923

DOWNLOAD EBOOK

The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.


Book Synopsis Random Walks on Infinite Graphs and Groups by : Wolfgang Woess

Download or read book Random Walks on Infinite Graphs and Groups written by Wolfgang Woess and published by Cambridge University Press. This book was released on 2000-02-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.


Random Walks and Electric Networks

Random Walks and Electric Networks

Author: Peter G. Doyle

Publisher: American Mathematical Soc.

Published: 1984-12-31

Total Pages: 159

ISBN-13: 1614440220

DOWNLOAD EBOOK

Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.


Book Synopsis Random Walks and Electric Networks by : Peter G. Doyle

Download or read book Random Walks and Electric Networks written by Peter G. Doyle and published by American Mathematical Soc.. This book was released on 1984-12-31 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.


Random Graph Dynamics

Random Graph Dynamics

Author: Rick Durrett

Publisher: Cambridge University Press

Published: 2010-05-31

Total Pages: 203

ISBN-13: 1139460889

DOWNLOAD EBOOK

The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.


Book Synopsis Random Graph Dynamics by : Rick Durrett

Download or read book Random Graph Dynamics written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-05-31 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.