H-Infinity Optimal Control and Related Minimax Design Problems

H-Infinity Optimal Control and Related Minimax Design Problems

Author: Tamer Başar

Publisher: Springer Science & Business Media

Published: 2008-01-21

Total Pages: 418

ISBN-13: 0817647562

DOWNLOAD EBOOK

This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. Based mostly on recent work by the authors, the book is written on a good mathematical level. Many results in it are original.


Book Synopsis H-Infinity Optimal Control and Related Minimax Design Problems by : Tamer Başar

Download or read book H-Infinity Optimal Control and Related Minimax Design Problems written by Tamer Başar and published by Springer Science & Business Media. This book was released on 2008-01-21 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. Based mostly on recent work by the authors, the book is written on a good mathematical level. Many results in it are original.


H∞-Optimal Control and Related Minimax Design Problems

H∞-Optimal Control and Related Minimax Design Problems

Author: Tamer Başar

Publisher: Springer Science & Business Media

Published: 2009-05-21

Total Pages: 417

ISBN-13: 0817647570

DOWNLOAD EBOOK

This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.


Book Synopsis H∞-Optimal Control and Related Minimax Design Problems by : Tamer Başar

Download or read book H∞-Optimal Control and Related Minimax Design Problems written by Tamer Başar and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.


H(infinity)-Optimal Control and Related ...

H(infinity)-Optimal Control and Related ...

Author: Basar

Publisher: Springer Science & Business Media

Published: 1991-06

Total Pages: 248

ISBN-13:

DOWNLOAD EBOOK

One of the major concentrated activities of the past decade in control theory has been the development of the so-called "HOO-optimal control theory," which addresses the issue of worst-case controller design for linear plants subject to unknown additive disturbances, including problems of disturbance attenuation, model matching, and tracking. The mathematical OO symbol "H " stands for the Hardy space of all complex-valued functions of a complex variable, which are analytic and bounded in the open right half complex plane. For a linear (continuous-time, time-invariant) plant, oo the H norm of the transfer matrix is the maximum of its largest singular value over all frequencies. OO Controller design problems where the H norm plays an important role were initially formulated by George Zames in the early 1980's, in the context of sensitivity reduction in linear plants, with the design problem posed as a mathematical optimization problem using an (HOO) operator norm. Thus formulated originally in the frequency domain, the main tools used during the early phases of research on this class of problems have been operator and approximation theory, spectral factorization, and (Youla) parametrization, leading initially to rather complicated (high-dimensional) OO optimal or near-optimal (under the H norm) controllers.


Book Synopsis H(infinity)-Optimal Control and Related ... by : Basar

Download or read book H(infinity)-Optimal Control and Related ... written by Basar and published by Springer Science & Business Media. This book was released on 1991-06 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major concentrated activities of the past decade in control theory has been the development of the so-called "HOO-optimal control theory," which addresses the issue of worst-case controller design for linear plants subject to unknown additive disturbances, including problems of disturbance attenuation, model matching, and tracking. The mathematical OO symbol "H " stands for the Hardy space of all complex-valued functions of a complex variable, which are analytic and bounded in the open right half complex plane. For a linear (continuous-time, time-invariant) plant, oo the H norm of the transfer matrix is the maximum of its largest singular value over all frequencies. OO Controller design problems where the H norm plays an important role were initially formulated by George Zames in the early 1980's, in the context of sensitivity reduction in linear plants, with the design problem posed as a mathematical optimization problem using an (HOO) operator norm. Thus formulated originally in the frequency domain, the main tools used during the early phases of research on this class of problems have been operator and approximation theory, spectral factorization, and (Youla) parametrization, leading initially to rather complicated (high-dimensional) OO optimal or near-optimal (under the H norm) controllers.


H(infinity)-Optimal Control and Related ...

H(infinity)-Optimal Control and Related ...

Author: Basar

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 238

ISBN-13: 1489935614

DOWNLOAD EBOOK

One of the major concentrated activities of the past decade in control theory has been the development of the so-called "HOO-optimal control theory," which addresses the issue of worst-case controller design for linear plants subject to unknown additive disturbances, including problems of disturbance attenuation, model matching, and tracking. The mathematical OO symbol "H " stands for the Hardy space of all complex-valued functions of a complex variable, which are analytic and bounded in the open right half complex plane. For a linear (continuous-time, time-invariant) plant, oo the H norm of the transfer matrix is the maximum of its largest singular value over all frequencies. OO Controller design problems where the H norm plays an important role were initially formulated by George Zames in the early 1980's, in the context of sensitivity reduction in linear plants, with the design problem posed as a mathematical optimization problem using an (HOO) operator norm. Thus formulated originally in the frequency domain, the main tools used during the early phases of research on this class of problems have been operator and approximation theory, spectral factorization, and (Youla) parametrization, leading initially to rather complicated (high-dimensional) OO optimal or near-optimal (under the H norm) controllers.


Book Synopsis H(infinity)-Optimal Control and Related ... by : Basar

Download or read book H(infinity)-Optimal Control and Related ... written by Basar and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major concentrated activities of the past decade in control theory has been the development of the so-called "HOO-optimal control theory," which addresses the issue of worst-case controller design for linear plants subject to unknown additive disturbances, including problems of disturbance attenuation, model matching, and tracking. The mathematical OO symbol "H " stands for the Hardy space of all complex-valued functions of a complex variable, which are analytic and bounded in the open right half complex plane. For a linear (continuous-time, time-invariant) plant, oo the H norm of the transfer matrix is the maximum of its largest singular value over all frequencies. OO Controller design problems where the H norm plays an important role were initially formulated by George Zames in the early 1980's, in the context of sensitivity reduction in linear plants, with the design problem posed as a mathematical optimization problem using an (HOO) operator norm. Thus formulated originally in the frequency domain, the main tools used during the early phases of research on this class of problems have been operator and approximation theory, spectral factorization, and (Youla) parametrization, leading initially to rather complicated (high-dimensional) OO optimal or near-optimal (under the H norm) controllers.


Optimal Control Of Singularly Perturbed Linear Systems And Applications

Optimal Control Of Singularly Perturbed Linear Systems And Applications

Author: Zoran Gajic

Publisher: CRC Press

Published: 2001-01-04

Total Pages: 264

ISBN-13: 0824744853

DOWNLOAD EBOOK

Highlights the Hamiltonian approach to singularly perturbed linear optimal control systems. Develops parallel algorithms in independent slow and fast time scales for solving various optimal linear control and filtering problems in standard and nonstandard singularly perturbed systems, continuous- and discrete-time, deterministic and stochastic, multimodeling structures, Kalman filtering, sampled data systems, and much more.


Book Synopsis Optimal Control Of Singularly Perturbed Linear Systems And Applications by : Zoran Gajic

Download or read book Optimal Control Of Singularly Perturbed Linear Systems And Applications written by Zoran Gajic and published by CRC Press. This book was released on 2001-01-04 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlights the Hamiltonian approach to singularly perturbed linear optimal control systems. Develops parallel algorithms in independent slow and fast time scales for solving various optimal linear control and filtering problems in standard and nonstandard singularly perturbed systems, continuous- and discrete-time, deterministic and stochastic, multimodeling structures, Kalman filtering, sampled data systems, and much more.


Optimal Control, Stabilization and Nonsmooth Analysis

Optimal Control, Stabilization and Nonsmooth Analysis

Author: Marcio S. de Queiroz

Publisher: Springer Science & Business Media

Published: 2004-04-20

Total Pages: 380

ISBN-13: 9783540213307

DOWNLOAD EBOOK

This edited book contains selected papers presented at the Louisiana Conference on Mathematical Control Theory (MCT'03), which brought together over 35 prominent world experts in mathematical control theory and its applications. The book forms a well-integrated exploration of those areas of mathematical control theory in which nonsmooth analysis is having a major impact. These include necessary and sufficient conditions in optimal control, Lyapunov characterizations of stability, input-to-state stability, the construction of feedback mechanisms, viscosity solutions of Hamilton-Jacobi equations, invariance, approximation theory, impulsive systems, computational issues for nonlinear systems, and other topics of interest to mathematicians and control engineers. The book has a strong interdisciplinary component and was designed to facilitate the interaction between leading mathematical experts in nonsmooth analysis and engineers who are increasingly using nonsmooth analytic tools.


Book Synopsis Optimal Control, Stabilization and Nonsmooth Analysis by : Marcio S. de Queiroz

Download or read book Optimal Control, Stabilization and Nonsmooth Analysis written by Marcio S. de Queiroz and published by Springer Science & Business Media. This book was released on 2004-04-20 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book contains selected papers presented at the Louisiana Conference on Mathematical Control Theory (MCT'03), which brought together over 35 prominent world experts in mathematical control theory and its applications. The book forms a well-integrated exploration of those areas of mathematical control theory in which nonsmooth analysis is having a major impact. These include necessary and sufficient conditions in optimal control, Lyapunov characterizations of stability, input-to-state stability, the construction of feedback mechanisms, viscosity solutions of Hamilton-Jacobi equations, invariance, approximation theory, impulsive systems, computational issues for nonlinear systems, and other topics of interest to mathematicians and control engineers. The book has a strong interdisciplinary component and was designed to facilitate the interaction between leading mathematical experts in nonsmooth analysis and engineers who are increasingly using nonsmooth analytic tools.


Robust and Adaptive Control

Robust and Adaptive Control

Author: Eugene Lavretsky

Publisher: Springer Nature

Published: 2023

Total Pages: 718

ISBN-13: 3031383141

DOWNLOAD EBOOK

Zusammenfassung: Robust and Adaptive Control (second edition) shows readers how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications, the focus of the book is primarily on continuous-time dynamical systems. The two-part text begins with robust and optimal linear control methods and moves on to a self-contained presentation of the design and analysis of model reference adaptive control for nonlinear uncertain dynamical systems. Features of the second edition include: sufficient conditions for closed-loop stability under output feedback observer-based loop-transfer recovery (OBLTR) with adaptive augmentation; OBLTR applications to aerospace systems; case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; realistic examples and simulation data illustrating key features of the methods described; and problem solutions for instructors and MATLAB® code provided electronically. The theory and practical applications address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles drawn from the authors' extensive professional experience with The Boeing Company. The systems covered are challenging--often open-loop unstable with uncertainties in their dynamics--and thus require both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers should have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. The second edition contains a background summary of linear systems and control systems and an introduction to state observers and output feedback control, helping to make it self-contained. Robust and Adaptive Control teaches senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value


Book Synopsis Robust and Adaptive Control by : Eugene Lavretsky

Download or read book Robust and Adaptive Control written by Eugene Lavretsky and published by Springer Nature. This book was released on 2023 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zusammenfassung: Robust and Adaptive Control (second edition) shows readers how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications, the focus of the book is primarily on continuous-time dynamical systems. The two-part text begins with robust and optimal linear control methods and moves on to a self-contained presentation of the design and analysis of model reference adaptive control for nonlinear uncertain dynamical systems. Features of the second edition include: sufficient conditions for closed-loop stability under output feedback observer-based loop-transfer recovery (OBLTR) with adaptive augmentation; OBLTR applications to aerospace systems; case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; realistic examples and simulation data illustrating key features of the methods described; and problem solutions for instructors and MATLAB® code provided electronically. The theory and practical applications address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles drawn from the authors' extensive professional experience with The Boeing Company. The systems covered are challenging--often open-loop unstable with uncertainties in their dynamics--and thus require both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers should have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. The second edition contains a background summary of linear systems and control systems and an introduction to state observers and output feedback control, helping to make it self-contained. Robust and Adaptive Control teaches senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value


Dynamic Programming and Optimal Control

Dynamic Programming and Optimal Control

Author: Dimitri Bertsekas

Publisher: Athena Scientific

Published:

Total Pages: 613

ISBN-13: 1886529434

DOWNLOAD EBOOK

This is the leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization. The treatment focuses on basic unifying themes, and conceptual foundations. It illustrates the versatility, power, and generality of the method with many examples and applications from engineering, operations research, and other fields. It also addresses extensively the practical application of the methodology, possibly through the use of approximations, and provides an extensive treatment of the far-reaching methodology of Neuro-Dynamic Programming/Reinforcement Learning. Among its special features, the book 1) provides a unifying framework for sequential decision making, 2) treats simultaneously deterministic and stochastic control problems popular in modern control theory and Markovian decision popular in operations research, 3) develops the theory of deterministic optimal control problems including the Pontryagin Minimum Principle, 4) introduces recent suboptimal control and simulation-based approximation techniques (neuro-dynamic programming), which allow the practical application of dynamic programming to complex problems that involve the dual curse of large dimension and lack of an accurate mathematical model, 5) provides a comprehensive treatment of infinite horizon problems in the second volume, and an introductory treatment in the first volume The electronic version of the book includes 29 theoretical problems, with high-quality solutions, which enhance the range of coverage of the book.


Book Synopsis Dynamic Programming and Optimal Control by : Dimitri Bertsekas

Download or read book Dynamic Programming and Optimal Control written by Dimitri Bertsekas and published by Athena Scientific. This book was released on with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization. The treatment focuses on basic unifying themes, and conceptual foundations. It illustrates the versatility, power, and generality of the method with many examples and applications from engineering, operations research, and other fields. It also addresses extensively the practical application of the methodology, possibly through the use of approximations, and provides an extensive treatment of the far-reaching methodology of Neuro-Dynamic Programming/Reinforcement Learning. Among its special features, the book 1) provides a unifying framework for sequential decision making, 2) treats simultaneously deterministic and stochastic control problems popular in modern control theory and Markovian decision popular in operations research, 3) develops the theory of deterministic optimal control problems including the Pontryagin Minimum Principle, 4) introduces recent suboptimal control and simulation-based approximation techniques (neuro-dynamic programming), which allow the practical application of dynamic programming to complex problems that involve the dual curse of large dimension and lack of an accurate mathematical model, 5) provides a comprehensive treatment of infinite horizon problems in the second volume, and an introductory treatment in the first volume The electronic version of the book includes 29 theoretical problems, with high-quality solutions, which enhance the range of coverage of the book.


Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems

Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems

Author: Valery Y. Glizer

Publisher: Springer Nature

Published: 2022-08-29

Total Pages: 211

ISBN-13: 3031070518

DOWNLOAD EBOOK

This monograph is devoted to the analysis and solution of singular differential games and singular $H_{\inf}$ control problems in both finite- and infinite-horizon settings. Expanding on the authors’ previous work in this area, this novel text is the first to study the aforementioned singular problems using the regularization approach. After a brief introduction, solvability conditions are presented for the regular differential games and $H_{\inf}$ control problems. In the following chapter, the authors solve the singular finite-horizon linear-quadratic differential game using the regularization method. Next, they apply this method to the solution of an infinite-horizon type. The last two chapters are dedicated to the solution of singular finite-horizon and infinite-horizon linear-quadratic $H_{\inf}$ control problems. The authors use theoretical and real-world examples to illustrate the results and their applicability throughout the text, and have carefully organized the content to be as self-contained as possible, making it possible to study each chapter independently or in succession. Each chapter includes its own introduction, list of notations, a brief literature review on the topic, and a corresponding bibliography. For easier readability, detailed proofs are presented in separate subsections. Singular Linear-Quadratic Zero-Sum Differential Games and $H_{\inf}$ Control Problems will be of interest to researchers and engineers working in the areas of applied mathematics, dynamic games, control engineering, mechanical and aerospace engineering, electrical engineering, and biology. This book can also serve as a useful reference for graduate students in these area


Book Synopsis Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems by : Valery Y. Glizer

Download or read book Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems written by Valery Y. Glizer and published by Springer Nature. This book was released on 2022-08-29 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the analysis and solution of singular differential games and singular $H_{\inf}$ control problems in both finite- and infinite-horizon settings. Expanding on the authors’ previous work in this area, this novel text is the first to study the aforementioned singular problems using the regularization approach. After a brief introduction, solvability conditions are presented for the regular differential games and $H_{\inf}$ control problems. In the following chapter, the authors solve the singular finite-horizon linear-quadratic differential game using the regularization method. Next, they apply this method to the solution of an infinite-horizon type. The last two chapters are dedicated to the solution of singular finite-horizon and infinite-horizon linear-quadratic $H_{\inf}$ control problems. The authors use theoretical and real-world examples to illustrate the results and their applicability throughout the text, and have carefully organized the content to be as self-contained as possible, making it possible to study each chapter independently or in succession. Each chapter includes its own introduction, list of notations, a brief literature review on the topic, and a corresponding bibliography. For easier readability, detailed proofs are presented in separate subsections. Singular Linear-Quadratic Zero-Sum Differential Games and $H_{\inf}$ Control Problems will be of interest to researchers and engineers working in the areas of applied mathematics, dynamic games, control engineering, mechanical and aerospace engineering, electrical engineering, and biology. This book can also serve as a useful reference for graduate students in these area


Introduction to the Calculus of Variations and Control with Modern Applications

Introduction to the Calculus of Variations and Control with Modern Applications

Author: John A. Burns

Publisher: CRC Press

Published: 2013-08-28

Total Pages: 562

ISBN-13: 1466571403

DOWNLOAD EBOOK

Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions a


Book Synopsis Introduction to the Calculus of Variations and Control with Modern Applications by : John A. Burns

Download or read book Introduction to the Calculus of Variations and Control with Modern Applications written by John A. Burns and published by CRC Press. This book was released on 2013-08-28 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions a