Heat Transfer and Evaporation

Heat Transfer and Evaporation

Author: Walter Lucius Badger

Publisher:

Published: 1926

Total Pages: 318

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Heat Transfer and Evaporation by : Walter Lucius Badger

Download or read book Heat Transfer and Evaporation written by Walter Lucius Badger and published by . This book was released on 1926 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Evaporation, Condensation and Heat Transfer

Evaporation, Condensation and Heat Transfer

Author: Petros Antonis

Publisher:

Published: 2016-04-01

Total Pages: 294

ISBN-13: 9781681173085

DOWNLOAD EBOOK

Heat is the kinetic energy of particles as they vibrate. If we heat the particles at one end of a material the particles at that end vibrate more (have more kinetic energy) and bump into the neighboring particles which causes them to vibrate more. They collide with their neighbors and so the energy passes from one particle to another through the material. Evaporation and condensation are two processes through which matter changes from one state to another. Matter can exist in three different states: solid, liquid, or gas. In evaporation, matter changes from a liquid to a gas. In condensation, matter changes from a gas to a liquid. All matter is made of tiny moving particles called molecules. Evaporation and condensation happen when these molecules gain or lose energy in the form of heat. Evaporation happens when a liquid is heated. The heat gives the liquid's molecules more energy. This energy causes the molecules to move faster. If they gain enough energy, the molecules near the surface break away. These molecules escape the liquid and enter the air as gas. Condensation happens when molecules in a gas cool down. As the molecules lose heat, they lose energy. As a result they slow down. They move closer to other gas molecules. Finally these molecules collect together to form a liquid. The theoretical analysis and modeling of heat and mass transfer rates produced in evaporation and condensation processes are noteworthy concerns in a design of extensive range of industrial processes and devices. The book Evaporation, Condensation and Heat transfer emphasizes on the current issues of modeling on evaporation, water vapor condensation, heat transfer and exchanger, and on fluid flow in different aspects. The approaches would be applicable in various industrial purposes as well. The advanced idea and information described here will be fruitful for the readers to find a sustainable solution in an industrialized society..


Book Synopsis Evaporation, Condensation and Heat Transfer by : Petros Antonis

Download or read book Evaporation, Condensation and Heat Transfer written by Petros Antonis and published by . This book was released on 2016-04-01 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat is the kinetic energy of particles as they vibrate. If we heat the particles at one end of a material the particles at that end vibrate more (have more kinetic energy) and bump into the neighboring particles which causes them to vibrate more. They collide with their neighbors and so the energy passes from one particle to another through the material. Evaporation and condensation are two processes through which matter changes from one state to another. Matter can exist in three different states: solid, liquid, or gas. In evaporation, matter changes from a liquid to a gas. In condensation, matter changes from a gas to a liquid. All matter is made of tiny moving particles called molecules. Evaporation and condensation happen when these molecules gain or lose energy in the form of heat. Evaporation happens when a liquid is heated. The heat gives the liquid's molecules more energy. This energy causes the molecules to move faster. If they gain enough energy, the molecules near the surface break away. These molecules escape the liquid and enter the air as gas. Condensation happens when molecules in a gas cool down. As the molecules lose heat, they lose energy. As a result they slow down. They move closer to other gas molecules. Finally these molecules collect together to form a liquid. The theoretical analysis and modeling of heat and mass transfer rates produced in evaporation and condensation processes are noteworthy concerns in a design of extensive range of industrial processes and devices. The book Evaporation, Condensation and Heat transfer emphasizes on the current issues of modeling on evaporation, water vapor condensation, heat transfer and exchanger, and on fluid flow in different aspects. The approaches would be applicable in various industrial purposes as well. The advanced idea and information described here will be fruitful for the readers to find a sustainable solution in an industrialized society..


Heat Transfer in Condensation and Boiling

Heat Transfer in Condensation and Boiling

Author: Karl Stephan

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 342

ISBN-13: 3642524575

DOWNLOAD EBOOK

I welcome the opportunity to have my book translated, because of the great emphasis on two-phase flow and heat transfer in the English-speaking world, as related to research, university education, and industrial practice. The 1988 Springer-Verlag edition of "Warmeiibergang beim Kondensieren und beim Sieden" has been enlarged to include additional material on falling film evaporation (Chapter 12) and pressure drop in two-phase flow (Chapter 13). Minor errors in the original text have also been corrected. I would like to express my sincere appreciation to Professor Green, Asso ciate Professor of German at Rensselaer, for his excellent translation and co operation. My thanks go also to Professor Bergles for his close attention to technical and linguistic details. He carefully read the typescript and made many comments and suggestions that helped to improve the manuscript. I hope that the English edition will meet with' a favorable reception and contribute to better understanding and to progress in the field of heat transfer in condensation and boiling. February 1992 K. Stephan Preface to the German-Language Edition This book is a continuation of the series "Heat and Mass Transfer" edited by U. Grigull, in which three volumes have already been published. Its aim is to acquaint students and practicing engineers with heat transfer during condensa tion and boiling, and is intended primarily for students and engineers in mechanical, chemical, electrical, and industrial processing engineering.


Book Synopsis Heat Transfer in Condensation and Boiling by : Karl Stephan

Download or read book Heat Transfer in Condensation and Boiling written by Karl Stephan and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: I welcome the opportunity to have my book translated, because of the great emphasis on two-phase flow and heat transfer in the English-speaking world, as related to research, university education, and industrial practice. The 1988 Springer-Verlag edition of "Warmeiibergang beim Kondensieren und beim Sieden" has been enlarged to include additional material on falling film evaporation (Chapter 12) and pressure drop in two-phase flow (Chapter 13). Minor errors in the original text have also been corrected. I would like to express my sincere appreciation to Professor Green, Asso ciate Professor of German at Rensselaer, for his excellent translation and co operation. My thanks go also to Professor Bergles for his close attention to technical and linguistic details. He carefully read the typescript and made many comments and suggestions that helped to improve the manuscript. I hope that the English edition will meet with' a favorable reception and contribute to better understanding and to progress in the field of heat transfer in condensation and boiling. February 1992 K. Stephan Preface to the German-Language Edition This book is a continuation of the series "Heat and Mass Transfer" edited by U. Grigull, in which three volumes have already been published. Its aim is to acquaint students and practicing engineers with heat transfer during condensa tion and boiling, and is intended primarily for students and engineers in mechanical, chemical, electrical, and industrial processing engineering.


Drop Dynamics and Dropwise Condensation on Textured Surfaces

Drop Dynamics and Dropwise Condensation on Textured Surfaces

Author: Sameer Khandekar

Publisher: Springer Nature

Published: 2020-09-11

Total Pages: 462

ISBN-13: 3030484610

DOWNLOAD EBOOK

This book is an expanded form of the monograph, Dropwise Condensation on Inclined Textured Surfaces, Springer, 2013, published earlier by the authors, wherein a mathematical model for dropwise condensation of pure vapor over inclined textured surfaces was presented, followed by simulations and comparison with experiments. The model factored in several details of the overall quasi-cyclic process but approximated those at the scale of individual drops. In the last five years, drop level dynamics over hydrophobic surfaces have been extensively studied. These results can now be incorporated in the dropwise condensation model. Dropwise condensation is an efficient route to heat transfer and is often encountered in major power generation applications. Drops are also formed during condensation in distillation devices that work with diverse fluids ranging from water to liquid metals. Design of such equipment requires careful understanding of the condensation cycle, starting from the birth of nuclei, followed by molecular clusters, direct growth of droplets, their coalescence, all the way to instability and fall-off of condensed drops. The model described here considers these individual steps of the condensation cycle. Additional discussions include drop shape determination under static conditions, a fundamental study of drop spreading in sessile and pendant configurations, and the details of the drop coalescence phenomena. These are subsequently incorporated in the condensation model and their consequences are examined. As the mathematical model is spread over multiple scales of length and time, a parallelization approach to simulation is presented. Special topics include three-phase contact line modeling, surface preparation techniques, fundamentals of evaporation and evaporation rates of a single liquid drop, and measurement of heat transfer coefficient during large-scale condensation of water vapor. We hope that this significantly expanded text meets the expectations of design engineers, analysts, and researchers working in areas related to phase-change phenomena and heat transfer.


Book Synopsis Drop Dynamics and Dropwise Condensation on Textured Surfaces by : Sameer Khandekar

Download or read book Drop Dynamics and Dropwise Condensation on Textured Surfaces written by Sameer Khandekar and published by Springer Nature. This book was released on 2020-09-11 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an expanded form of the monograph, Dropwise Condensation on Inclined Textured Surfaces, Springer, 2013, published earlier by the authors, wherein a mathematical model for dropwise condensation of pure vapor over inclined textured surfaces was presented, followed by simulations and comparison with experiments. The model factored in several details of the overall quasi-cyclic process but approximated those at the scale of individual drops. In the last five years, drop level dynamics over hydrophobic surfaces have been extensively studied. These results can now be incorporated in the dropwise condensation model. Dropwise condensation is an efficient route to heat transfer and is often encountered in major power generation applications. Drops are also formed during condensation in distillation devices that work with diverse fluids ranging from water to liquid metals. Design of such equipment requires careful understanding of the condensation cycle, starting from the birth of nuclei, followed by molecular clusters, direct growth of droplets, their coalescence, all the way to instability and fall-off of condensed drops. The model described here considers these individual steps of the condensation cycle. Additional discussions include drop shape determination under static conditions, a fundamental study of drop spreading in sessile and pendant configurations, and the details of the drop coalescence phenomena. These are subsequently incorporated in the condensation model and their consequences are examined. As the mathematical model is spread over multiple scales of length and time, a parallelization approach to simulation is presented. Special topics include three-phase contact line modeling, surface preparation techniques, fundamentals of evaporation and evaporation rates of a single liquid drop, and measurement of heat transfer coefficient during large-scale condensation of water vapor. We hope that this significantly expanded text meets the expectations of design engineers, analysts, and researchers working in areas related to phase-change phenomena and heat transfer.


Heat Transfer in Evaporation and Condensation

Heat Transfer in Evaporation and Condensation

Author: Max Jakob

Publisher:

Published: 1937

Total Pages: 75

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Heat Transfer in Evaporation and Condensation by : Max Jakob

Download or read book Heat Transfer in Evaporation and Condensation written by Max Jakob and published by . This book was released on 1937 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering

Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering

Author: Santana, Harrson Silva

Publisher: IGI Global

Published: 2019-01-18

Total Pages: 367

ISBN-13: 1522571396

DOWNLOAD EBOOK

Microfluidics represent great potential for chemical processes design, development, optimization, and chemical engineering bolsters the project design of industrial processes often found in large chemical plants. Together, microfluidics and chemical engineering can lead to a more complete and comprehensive process. Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering provides emerging research exploring the theoretical and practical aspects of microfluidics and its application in chemical engineering with the intention of building pathways for new processes and product developments in industrial areas. Featuring coverage on a broad range of topics such as design techniques, hydrodynamics, and numerical modelling, this book is ideally designed for engineers, chemists, microfluidics and chemical engineering companies, academicians, researchers, and students.


Book Synopsis Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering by : Santana, Harrson Silva

Download or read book Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering written by Santana, Harrson Silva and published by IGI Global. This book was released on 2019-01-18 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics represent great potential for chemical processes design, development, optimization, and chemical engineering bolsters the project design of industrial processes often found in large chemical plants. Together, microfluidics and chemical engineering can lead to a more complete and comprehensive process. Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering provides emerging research exploring the theoretical and practical aspects of microfluidics and its application in chemical engineering with the intention of building pathways for new processes and product developments in industrial areas. Featuring coverage on a broad range of topics such as design techniques, hydrodynamics, and numerical modelling, this book is ideally designed for engineers, chemists, microfluidics and chemical engineering companies, academicians, researchers, and students.


University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


Book Synopsis University Physics by : Samuel J. Ling

Download or read book University Physics written by Samuel J. Ling and published by . This book was released on 2017-12-19 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


Latent Heat Transfer

Latent Heat Transfer

Author: G. S. H. Lock

Publisher:

Published: 1996

Total Pages: 326

ISBN-13:

DOWNLOAD EBOOK

This beginning graduate text is the first comprehensive work on latent heat transfer. It covers all forms: evaporation, sublimation, melting, condensation, freezing, and deposition. Throughout the book there is emphasis on the fundamentals that apply to both industrial and environmental processes. Three introductory chapters on the history and significance of thermodynamics and fluid mechanics are followed by self-contained treatments of solidification, fluidification, condensation, evaporation and boiling. The final chapter includes worked examples. Overall, the book provides insight for graduate students in engineering.


Book Synopsis Latent Heat Transfer by : G. S. H. Lock

Download or read book Latent Heat Transfer written by G. S. H. Lock and published by . This book was released on 1996 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This beginning graduate text is the first comprehensive work on latent heat transfer. It covers all forms: evaporation, sublimation, melting, condensation, freezing, and deposition. Throughout the book there is emphasis on the fundamentals that apply to both industrial and environmental processes. Three introductory chapters on the history and significance of thermodynamics and fluid mechanics are followed by self-contained treatments of solidification, fluidification, condensation, evaporation and boiling. The final chapter includes worked examples. Overall, the book provides insight for graduate students in engineering.


Introduction to Heat Transfer

Introduction to Heat Transfer

Author: Bengt Sundén

Publisher: WIT Press

Published: 2012

Total Pages: 365

ISBN-13: 1845646568

DOWNLOAD EBOOK

Presenting the basic mechanisms for transfer of heat, this book gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers. This book is aimed to be used in both undergraduate and graduate courses in heat transfer and thermal engineering. It can successfully be used in R & D work and thermal engineering design in industry and by consultancy firms


Book Synopsis Introduction to Heat Transfer by : Bengt Sundén

Download or read book Introduction to Heat Transfer written by Bengt Sundén and published by WIT Press. This book was released on 2012 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the basic mechanisms for transfer of heat, this book gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers. This book is aimed to be used in both undergraduate and graduate courses in heat transfer and thermal engineering. It can successfully be used in R & D work and thermal engineering design in industry and by consultancy firms


Evaporation Technology

Evaporation Technology

Author: Reinhard Billet

Publisher: Wiley-VCH

Published: 1989

Total Pages: 338

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Evaporation Technology by : Reinhard Billet

Download or read book Evaporation Technology written by Reinhard Billet and published by Wiley-VCH. This book was released on 1989 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: