Imaging and Metabolism

Imaging and Metabolism

Author: Jason S. Lewis

Publisher: Springer

Published: 2017-09-25

Total Pages: 331

ISBN-13: 3319614010

DOWNLOAD EBOOK

This book presents advanced molecular imaging techniques used to assess metabolic function. Covering state-of-the art modalities, it discusses the evaluation of a wide range of diseases that have a metabolic component, including cancer, inflammatory conditions, diabetes, neurodegeneration, and cardiovascular disorders. Imaging provides a quantitative perspective to the assessment of metabolic function and complements genetic analysis of disorders related to disrupted metabolism. Organized into four parts, the book highlights basic principles in molecular imaging techniques; metabolic imaging approaches, including magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and hybrid modalities; metabolic diseases; and future perspectives. Featuring contributions from leading authorities in radiology, oncology, cardiology, and neurology, Imaging and Metabolism is a pioneering exploration of the role of imaging modalities in assessing the physiological status of abnormal cells and diagnosing disease.


Book Synopsis Imaging and Metabolism by : Jason S. Lewis

Download or read book Imaging and Metabolism written by Jason S. Lewis and published by Springer. This book was released on 2017-09-25 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced molecular imaging techniques used to assess metabolic function. Covering state-of-the art modalities, it discusses the evaluation of a wide range of diseases that have a metabolic component, including cancer, inflammatory conditions, diabetes, neurodegeneration, and cardiovascular disorders. Imaging provides a quantitative perspective to the assessment of metabolic function and complements genetic analysis of disorders related to disrupted metabolism. Organized into four parts, the book highlights basic principles in molecular imaging techniques; metabolic imaging approaches, including magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and hybrid modalities; metabolic diseases; and future perspectives. Featuring contributions from leading authorities in radiology, oncology, cardiology, and neurology, Imaging and Metabolism is a pioneering exploration of the role of imaging modalities in assessing the physiological status of abnormal cells and diagnosing disease.


The Heterogeneity of Cancer Metabolism

The Heterogeneity of Cancer Metabolism

Author: Anne Le

Publisher: Springer

Published: 2018-06-26

Total Pages: 186

ISBN-13: 331977736X

DOWNLOAD EBOOK

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.


Book Synopsis The Heterogeneity of Cancer Metabolism by : Anne Le

Download or read book The Heterogeneity of Cancer Metabolism written by Anne Le and published by Springer. This book was released on 2018-06-26 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.


Diseases of the Brain, Head and Neck, Spine 2020–2023

Diseases of the Brain, Head and Neck, Spine 2020–2023

Author: Juerg Hodler

Publisher: Springer Nature

Published: 2020-02-14

Total Pages: 252

ISBN-13: 303038490X

DOWNLOAD EBOOK

This open access book offers an essential overview of brain, head and neck, and spine imaging. Over the last few years, there have been considerable advances in this area, driven by both clinical and technological developments. Written by leading international experts and teachers, the chapters are disease-oriented and cover all relevant imaging modalities, with a focus on magnetic resonance imaging and computed tomography. The book also includes a synopsis of pediatric imaging. IDKD books are rewritten (not merely updated) every four years, which means they offer a comprehensive review of the state-of-the-art in imaging. The book is clearly structured and features learning objectives, abstracts, subheadings, tables and take-home points, supported by design elements to help readers navigate the text. It will particularly appeal to general radiologists, radiology residents, and interventional radiologists who want to update their diagnostic expertise, as well as clinicians from other specialties who are interested in imaging for their patient care.


Book Synopsis Diseases of the Brain, Head and Neck, Spine 2020–2023 by : Juerg Hodler

Download or read book Diseases of the Brain, Head and Neck, Spine 2020–2023 written by Juerg Hodler and published by Springer Nature. This book was released on 2020-02-14 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book offers an essential overview of brain, head and neck, and spine imaging. Over the last few years, there have been considerable advances in this area, driven by both clinical and technological developments. Written by leading international experts and teachers, the chapters are disease-oriented and cover all relevant imaging modalities, with a focus on magnetic resonance imaging and computed tomography. The book also includes a synopsis of pediatric imaging. IDKD books are rewritten (not merely updated) every four years, which means they offer a comprehensive review of the state-of-the-art in imaging. The book is clearly structured and features learning objectives, abstracts, subheadings, tables and take-home points, supported by design elements to help readers navigate the text. It will particularly appeal to general radiologists, radiology residents, and interventional radiologists who want to update their diagnostic expertise, as well as clinicians from other specialties who are interested in imaging for their patient care.


Exploring Cancer Metabolic Reprogramming through Molecular Imaging

Exploring Cancer Metabolic Reprogramming through Molecular Imaging

Author: Franca Podo

Publisher: Frontiers Media SA

Published: 2017-07-27

Total Pages: 244

ISBN-13: 2889452344

DOWNLOAD EBOOK

The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.


Book Synopsis Exploring Cancer Metabolic Reprogramming through Molecular Imaging by : Franca Podo

Download or read book Exploring Cancer Metabolic Reprogramming through Molecular Imaging written by Franca Podo and published by Frontiers Media SA. This book was released on 2017-07-27 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.


Preclinical MRI of the Kidney

Preclinical MRI of the Kidney

Author: Andreas Pohlmann

Publisher: Humana

Published: 2022-02-19

Total Pages: 0

ISBN-13: 9781071609804

DOWNLOAD EBOOK

Preface... Table of Contents... Contributing Authors... Part I Introduction 1. Recommendations for Preclinical Renal MRI: A Comprehensive Open-Access Protocol Collection to Improve Training, Reproducibility, and Comparability of Studies Andreas Pohlmann, Susan J. Back, Andrea Fekete, Iris Friedli, Stefanie Hectors, Neil Peter Jerome, Min-Chi Ku, Dario Livio Longo, Martin Meier, Jason M. Millward, João S. Periquito, Erdmann Seeliger, Suraj D. Serai, Sonia Waiczies, Steven Sourbron, Christoffer Laustsen, and Thoralf Niendorf Part II Animal Models, Preparation, Monitoring, and Physiological Interventions 2. Animal Models of Renal Pathophysiology and Disease Adam Hosszu, Tamas Kaucsar, Erdmann Seeliger, and Andrea Fekete 3. Preparation and Monitoring of Small Animals in Renal MRI Tamas Kaucsar, Adam Hosszu, Erdmann Seeliger, Henning M. Reimann, and Andrea Fekete 4. Reversible (Patho-)Physiologically Relevant Test Interventions: Rationale and Examples Kathleen Cantow, Mechthild Ladwig-Wiegard, Bert Flemming, Andrea Fekete, Adam Hosszu, Erdmann Seeliger 5. Preparation of Ex Vivo Rodent Phantoms for Developing, Testing, and Training MR Imaging of the Kidney and Other Organs Jason M. Millward, João S. Periquito, Paula Ramos Delgado, Christian Prinz, Thoralf Niendorf, and Sonia Waiczies Part III Basic Concepts of Measurement Techniques 6. Quantitative Assessment of Renal Perfusion and Oxygenation by Invasive Probes: Basic Concepts Kathleen Cantow, Roger G. Evans, Dirk Grosenick, Thomas Gladytz, Thoralf Niendorf, Bert Flemming, and Erdmann Seeliger 7. Ultrasound and Photoacoustic Imaging of the Kidney: Basic Concepts and Protocols Sandra Meyer, Dieter Fuchs, and Martin Meier 8. Hardware Considerations for Preclinical Magnetic Resonance of the Kidney Paula Ramos Delgado, Ekkehard Küstermann, André Kühne, Jason M. Millward, Thoralf Niendorf, Andreas Pohlmann, and Martin Meier 9. MRI Mapping of Renal T1: Basic Concept Stefanie Hectors, Sabrina Doblas, Philippe Garteiser, Gwenaël Pagé, Bernard E. Van Beers, John C. Waterton, and Octavia Bane 10. MRI Mapping of the Blood Oxygenation Sensitive Parameter T2* in the Kidney: Basic Concept Lu-Ping Li, Bradley Hack, Erdmann Seeliger, and Pottumarthi V. Prasad 11. Renal Diffusion Weighted Imaging (DWI) for Apparent Diffusion Coefficient (ADC), Intra Voxel Incoherent Motion (IVIM), and Diffusion Tensor Imaging (DTI): Basic Concept Neil Peter Jerome, Anna Caroli, and Alexandra Ljimani 12. Dynamic Contrast Enhancement (DCE)-MRI Derived Renal Perfusion and Filtration: Basic Concepts Michael Pedersen, Pietro Irrera, Walter Dastrù, Frank G. Zöllner, Kevin M. Bennett, Scott C. Beeman, G. Larry Bretthorst, Joel R. Garbow, and Dario Livio Longo 13. Non-Invasive Renal Perfusion Measurement Using Arterial Spin Labelling (ASL) MRI: Basic Concept Min-Chi Ku, María A. Fernández-Seara, Frank Kober, and Thoralf Niendorf 14. Renal pH Imaging Using Chemical Exchange Saturation Transfer (CEST)-MRI: Basic Concepts Dario Livio Longo, Pietro Irrera, Lorena Consolino, Phillip Zhe Sun, and Michael T. McMahon 15. Sodium (23Na) MRI of the Kidney: Basic Concept James T. Grist, Esben Søvsø Hansen, Frank G. Zöllner, and Christoffer Laustsen 16. Hyperpolarized Carbon (13C) MRI of the Kidneys: Basic Concepts Cornelius von Morze, Galen D. Reed, Zhen J. Wang, Michael A. Ohliger, and Christoffer Laustsen 17. Functional Imaging Using Fluorine (19F) MR Methods: Basic Concepts Sonia Waiczies, Christian Prinz, Ludger Starke, Jason M. Millward, Paula Ramos Delgado, Jens Rosenberg, Marc Nazaré, Helmar Waiczies, Andreas Pohlmann, and Thoralf Niendorf 18. MR Elastography of the Abdomen: Basic Concepts Suraj D. Serai and Meng Yin Part IV Experimental Protocols 19. Monitoring Renal H


Book Synopsis Preclinical MRI of the Kidney by : Andreas Pohlmann

Download or read book Preclinical MRI of the Kidney written by Andreas Pohlmann and published by Humana. This book was released on 2022-02-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface... Table of Contents... Contributing Authors... Part I Introduction 1. Recommendations for Preclinical Renal MRI: A Comprehensive Open-Access Protocol Collection to Improve Training, Reproducibility, and Comparability of Studies Andreas Pohlmann, Susan J. Back, Andrea Fekete, Iris Friedli, Stefanie Hectors, Neil Peter Jerome, Min-Chi Ku, Dario Livio Longo, Martin Meier, Jason M. Millward, João S. Periquito, Erdmann Seeliger, Suraj D. Serai, Sonia Waiczies, Steven Sourbron, Christoffer Laustsen, and Thoralf Niendorf Part II Animal Models, Preparation, Monitoring, and Physiological Interventions 2. Animal Models of Renal Pathophysiology and Disease Adam Hosszu, Tamas Kaucsar, Erdmann Seeliger, and Andrea Fekete 3. Preparation and Monitoring of Small Animals in Renal MRI Tamas Kaucsar, Adam Hosszu, Erdmann Seeliger, Henning M. Reimann, and Andrea Fekete 4. Reversible (Patho-)Physiologically Relevant Test Interventions: Rationale and Examples Kathleen Cantow, Mechthild Ladwig-Wiegard, Bert Flemming, Andrea Fekete, Adam Hosszu, Erdmann Seeliger 5. Preparation of Ex Vivo Rodent Phantoms for Developing, Testing, and Training MR Imaging of the Kidney and Other Organs Jason M. Millward, João S. Periquito, Paula Ramos Delgado, Christian Prinz, Thoralf Niendorf, and Sonia Waiczies Part III Basic Concepts of Measurement Techniques 6. Quantitative Assessment of Renal Perfusion and Oxygenation by Invasive Probes: Basic Concepts Kathleen Cantow, Roger G. Evans, Dirk Grosenick, Thomas Gladytz, Thoralf Niendorf, Bert Flemming, and Erdmann Seeliger 7. Ultrasound and Photoacoustic Imaging of the Kidney: Basic Concepts and Protocols Sandra Meyer, Dieter Fuchs, and Martin Meier 8. Hardware Considerations for Preclinical Magnetic Resonance of the Kidney Paula Ramos Delgado, Ekkehard Küstermann, André Kühne, Jason M. Millward, Thoralf Niendorf, Andreas Pohlmann, and Martin Meier 9. MRI Mapping of Renal T1: Basic Concept Stefanie Hectors, Sabrina Doblas, Philippe Garteiser, Gwenaël Pagé, Bernard E. Van Beers, John C. Waterton, and Octavia Bane 10. MRI Mapping of the Blood Oxygenation Sensitive Parameter T2* in the Kidney: Basic Concept Lu-Ping Li, Bradley Hack, Erdmann Seeliger, and Pottumarthi V. Prasad 11. Renal Diffusion Weighted Imaging (DWI) for Apparent Diffusion Coefficient (ADC), Intra Voxel Incoherent Motion (IVIM), and Diffusion Tensor Imaging (DTI): Basic Concept Neil Peter Jerome, Anna Caroli, and Alexandra Ljimani 12. Dynamic Contrast Enhancement (DCE)-MRI Derived Renal Perfusion and Filtration: Basic Concepts Michael Pedersen, Pietro Irrera, Walter Dastrù, Frank G. Zöllner, Kevin M. Bennett, Scott C. Beeman, G. Larry Bretthorst, Joel R. Garbow, and Dario Livio Longo 13. Non-Invasive Renal Perfusion Measurement Using Arterial Spin Labelling (ASL) MRI: Basic Concept Min-Chi Ku, María A. Fernández-Seara, Frank Kober, and Thoralf Niendorf 14. Renal pH Imaging Using Chemical Exchange Saturation Transfer (CEST)-MRI: Basic Concepts Dario Livio Longo, Pietro Irrera, Lorena Consolino, Phillip Zhe Sun, and Michael T. McMahon 15. Sodium (23Na) MRI of the Kidney: Basic Concept James T. Grist, Esben Søvsø Hansen, Frank G. Zöllner, and Christoffer Laustsen 16. Hyperpolarized Carbon (13C) MRI of the Kidneys: Basic Concepts Cornelius von Morze, Galen D. Reed, Zhen J. Wang, Michael A. Ohliger, and Christoffer Laustsen 17. Functional Imaging Using Fluorine (19F) MR Methods: Basic Concepts Sonia Waiczies, Christian Prinz, Ludger Starke, Jason M. Millward, Paula Ramos Delgado, Jens Rosenberg, Marc Nazaré, Helmar Waiczies, Andreas Pohlmann, and Thoralf Niendorf 18. MR Elastography of the Abdomen: Basic Concepts Suraj D. Serai and Meng Yin Part IV Experimental Protocols 19. Monitoring Renal H


Noninvasive Imaging of Cardiac Metabolism

Noninvasive Imaging of Cardiac Metabolism

Author: Ernst E. van der Wall

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 317

ISBN-13: 9400932871

DOWNLOAD EBOOK

F.J.Th. WACKERS Metabolic imaging: The future of cardiovascular nuclear imaging? Since cardiovascular nuclear imaging emerged as a new subspecialty in the mid-1970s, the field has gone through an explosive growth. Radionuclide techniques became readily recognized as important new diagnostic aids in the armamentarium of the clinical cardiologist. Initially, cardiovascular nuclear imaging focused on static myocardial imaging using either thallium-201 or technetium-99m-pyrophosphate for diagnosing acute myocardial infarction. Shortly thereafter, multigated equilibrium radionuclide angiocardiography became the most widely used noninvasive method for assessing cardiac function. Furthermore, attention and clinical application shifted towards the use of radionuclide techniques in conjunction with exercise testing, either with thallium-20 1 myocardial perfusion imaging or technetium-99m left ventricular function studies. The future of cardiovascular nuclear imaging appeared exciting and promising. However, around 1980 pessimists predicted the premature demise of cardiovascular nuclear imaging with the introduction of digital subtraction angiography and nuclear magnetic resonance imaging. These doomsayers have been proven wrong: in 1985 cardiovascular nuclear imaging is thriving and, in many centers, even expanding. Although digital substraction angiography and magnetic resonance imaging provided exquisite anatomic detail, for practical evaluation of patients with ischemic heart disease - in the Coronary Care Unit or exercise laboratory - nuclear techniques appeared to be more practical.


Book Synopsis Noninvasive Imaging of Cardiac Metabolism by : Ernst E. van der Wall

Download or read book Noninvasive Imaging of Cardiac Metabolism written by Ernst E. van der Wall and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: F.J.Th. WACKERS Metabolic imaging: The future of cardiovascular nuclear imaging? Since cardiovascular nuclear imaging emerged as a new subspecialty in the mid-1970s, the field has gone through an explosive growth. Radionuclide techniques became readily recognized as important new diagnostic aids in the armamentarium of the clinical cardiologist. Initially, cardiovascular nuclear imaging focused on static myocardial imaging using either thallium-201 or technetium-99m-pyrophosphate for diagnosing acute myocardial infarction. Shortly thereafter, multigated equilibrium radionuclide angiocardiography became the most widely used noninvasive method for assessing cardiac function. Furthermore, attention and clinical application shifted towards the use of radionuclide techniques in conjunction with exercise testing, either with thallium-20 1 myocardial perfusion imaging or technetium-99m left ventricular function studies. The future of cardiovascular nuclear imaging appeared exciting and promising. However, around 1980 pessimists predicted the premature demise of cardiovascular nuclear imaging with the introduction of digital subtraction angiography and nuclear magnetic resonance imaging. These doomsayers have been proven wrong: in 1985 cardiovascular nuclear imaging is thriving and, in many centers, even expanding. Although digital substraction angiography and magnetic resonance imaging provided exquisite anatomic detail, for practical evaluation of patients with ischemic heart disease - in the Coronary Care Unit or exercise laboratory - nuclear techniques appeared to be more practical.


Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions

Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions

Author: Francisco Gonzalez-Lima

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 539

ISBN-13: 9401127123

DOWNLOAD EBOOK

In recent years, revolutionary technical advances have permitted neuroscientists to map the functioning of the brain in exquisite detail. Of interest are the new techniques that visually display cell energy metabolism which is coupled to functional brain activity in behaving animals. This is the first book dealing with the application of 2-deoxyglucose and related metabolic mapping techniques for brain imaging of behavioral and learning functions. Quantitative autoradiographic techniques based on the use of exogenous markers include radiolabeled glucose and its analogs, especially 2-deoxyglucose and fluorodeoxyglucose. Other mapping techniques are based on the histochemical staining of endogenous metabolic markers such as cytochrome oxidase, as well as immunohistochemistry for expression of c-fos genes. In spite of the great potential capabilities of the new imaging techniques, relatively few neuroscientists are using this approach to study brain functions related to behavior. There is a need to review state-of-the-art applications of these methods in behavioral neuroscience, and to formulate recommendations for future research in this area. This book is intended to fulfill these needs by bringing together leading neuroscientists using metabolic mapping approaches to elucidate brain mechanisms of behavior. Discussions are not limited to one animal species, but they cover a broad range of vertebrates with unique behavioral capabilities.


Book Synopsis Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions by : Francisco Gonzalez-Lima

Download or read book Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions written by Francisco Gonzalez-Lima and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, revolutionary technical advances have permitted neuroscientists to map the functioning of the brain in exquisite detail. Of interest are the new techniques that visually display cell energy metabolism which is coupled to functional brain activity in behaving animals. This is the first book dealing with the application of 2-deoxyglucose and related metabolic mapping techniques for brain imaging of behavioral and learning functions. Quantitative autoradiographic techniques based on the use of exogenous markers include radiolabeled glucose and its analogs, especially 2-deoxyglucose and fluorodeoxyglucose. Other mapping techniques are based on the histochemical staining of endogenous metabolic markers such as cytochrome oxidase, as well as immunohistochemistry for expression of c-fos genes. In spite of the great potential capabilities of the new imaging techniques, relatively few neuroscientists are using this approach to study brain functions related to behavior. There is a need to review state-of-the-art applications of these methods in behavioral neuroscience, and to formulate recommendations for future research in this area. This book is intended to fulfill these needs by bringing together leading neuroscientists using metabolic mapping approaches to elucidate brain mechanisms of behavior. Discussions are not limited to one animal species, but they cover a broad range of vertebrates with unique behavioral capabilities.


Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy

Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy

Author: Peder Larson

Publisher: Academic Press

Published: 2021-11-28

Total Pages: 298

ISBN-13: 0128222700

DOWNLOAD EBOOK

MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It’s primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. Presents the physics and hardware of dissolution dynamic nuclear polarization Explains the behaviour of hyperpolarized carbon-13 agents and how to image them Detailed guidance on experimental design and data interpretation Identifies promising and potential applications of hyperpolarized carbon-13 MR


Book Synopsis Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy by : Peder Larson

Download or read book Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy written by Peder Larson and published by Academic Press. This book was released on 2021-11-28 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It’s primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. Presents the physics and hardware of dissolution dynamic nuclear polarization Explains the behaviour of hyperpolarized carbon-13 agents and how to image them Detailed guidance on experimental design and data interpretation Identifies promising and potential applications of hyperpolarized carbon-13 MR


Natural Biomarkers for Cellular Metabolism

Natural Biomarkers for Cellular Metabolism

Author: Vladimir V. Ghukasyan

Publisher: CRC Press

Published: 2014-09-26

Total Pages: 412

ISBN-13: 1466509988

DOWNLOAD EBOOK

From the Lab to Clinical Settings—Advances in Quantitative, Noninvasive Optical Diagnostics Noninvasive fluorescence imaging techniques, novel fluorescent labels, and natural biomarkers are revolutionizing our knowledge of cellular processes, signaling and metabolic pathways, the underlying mechanisms for health problems, and the identification of new therapeutic targets for drug discoveries. Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications delves into the current state of knowledge on intrinsic fluorescent biomarkers and highlights recent developments in using these biomarkers for the metabolic mapping and clinical diagnosis of healthy and diseased cells and tissues. Autofluorescent Biomarkers for Biomedical Diagnostics The book’s first section introduces the fundamentals of cellular energy metabolism as well as natural biomarkers within the context of their biological functions. The second section outlines the theoretical and technical background of quantitative, noninvasive, autofluorescence microscopy and spectroscopy methods, including experimental design, calibration, pitfalls, and remedies of data acquisition and analysis. The last two sections highlight advances in biomedical and biochemical applications, such as monitoring stem cell differentiation in engineered tissues and diagnosing cancer and ophthalmic diseases quantitatively and noninvasively. Tailored to Interdisciplinary Researchers Covering cell biology, imaging techniques, and clinical diagnostics, this book provides readers with a complete guide to studying cellular/tissue metabolism under healthy, diseased, and environment-induced stress conditions using natural biomarkers. The book is designed for graduate and advanced undergraduate students, biophysics instructors, medical researchers, and those in pharmaceutical R&D.


Book Synopsis Natural Biomarkers for Cellular Metabolism by : Vladimir V. Ghukasyan

Download or read book Natural Biomarkers for Cellular Metabolism written by Vladimir V. Ghukasyan and published by CRC Press. This book was released on 2014-09-26 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Lab to Clinical Settings—Advances in Quantitative, Noninvasive Optical Diagnostics Noninvasive fluorescence imaging techniques, novel fluorescent labels, and natural biomarkers are revolutionizing our knowledge of cellular processes, signaling and metabolic pathways, the underlying mechanisms for health problems, and the identification of new therapeutic targets for drug discoveries. Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications delves into the current state of knowledge on intrinsic fluorescent biomarkers and highlights recent developments in using these biomarkers for the metabolic mapping and clinical diagnosis of healthy and diseased cells and tissues. Autofluorescent Biomarkers for Biomedical Diagnostics The book’s first section introduces the fundamentals of cellular energy metabolism as well as natural biomarkers within the context of their biological functions. The second section outlines the theoretical and technical background of quantitative, noninvasive, autofluorescence microscopy and spectroscopy methods, including experimental design, calibration, pitfalls, and remedies of data acquisition and analysis. The last two sections highlight advances in biomedical and biochemical applications, such as monitoring stem cell differentiation in engineered tissues and diagnosing cancer and ophthalmic diseases quantitatively and noninvasively. Tailored to Interdisciplinary Researchers Covering cell biology, imaging techniques, and clinical diagnostics, this book provides readers with a complete guide to studying cellular/tissue metabolism under healthy, diseased, and environment-induced stress conditions using natural biomarkers. The book is designed for graduate and advanced undergraduate students, biophysics instructors, medical researchers, and those in pharmaceutical R&D.


Stimulated Raman Scattering Microscopy

Stimulated Raman Scattering Microscopy

Author: Ji-Xin Cheng

Publisher: Elsevier

Published: 2021-12-04

Total Pages: 612

ISBN-13: 0323903371

DOWNLOAD EBOOK

Stimulated Raman Scattering Microscopy: Techniques and Applications describes innovations in instrumentation, data science, chemical probe development, and various applications enabled by a state-of-the-art stimulated Raman scattering (SRS) microscope. Beginning by introducing the history of SRS, this book is composed of seven parts in depth including instrumentation strategies that have pushed the physical limits of SRS microscopy, vibrational probes (which increased the SRS imaging functionality), data science methods, and recent efforts in miniaturization. This rapidly growing field needs a comprehensive resource that brings together the current knowledge on the topic, and this book does just that. Researchers who need to know the requirements for all aspects of the instrumentation as well as the requirements of different imaging applications (such as different types of biological tissue) will benefit enormously from the examples of successful demonstrations of SRS imaging in the book. Led by Editor-in-Chief Ji-Xin Cheng, a pioneer in coherent Raman scattering microscopy, the editorial team has brought together various experts on each aspect of SRS imaging from around the world to provide an authoritative guide to this increasingly important imaging technique. This book is a comprehensive reference for researchers, faculty, postdoctoral researchers, and engineers. Includes every aspect from theoretic reviews of SRS spectroscopy to innovations in instrumentation and current applications of SRS microscopy Provides copious visual elements that illustrate key information, such as SRS images of various biological samples and instrument diagrams and schematics Edited by leading experts of SRS microscopy, with each chapter written by experts in their given topics


Book Synopsis Stimulated Raman Scattering Microscopy by : Ji-Xin Cheng

Download or read book Stimulated Raman Scattering Microscopy written by Ji-Xin Cheng and published by Elsevier. This book was released on 2021-12-04 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stimulated Raman Scattering Microscopy: Techniques and Applications describes innovations in instrumentation, data science, chemical probe development, and various applications enabled by a state-of-the-art stimulated Raman scattering (SRS) microscope. Beginning by introducing the history of SRS, this book is composed of seven parts in depth including instrumentation strategies that have pushed the physical limits of SRS microscopy, vibrational probes (which increased the SRS imaging functionality), data science methods, and recent efforts in miniaturization. This rapidly growing field needs a comprehensive resource that brings together the current knowledge on the topic, and this book does just that. Researchers who need to know the requirements for all aspects of the instrumentation as well as the requirements of different imaging applications (such as different types of biological tissue) will benefit enormously from the examples of successful demonstrations of SRS imaging in the book. Led by Editor-in-Chief Ji-Xin Cheng, a pioneer in coherent Raman scattering microscopy, the editorial team has brought together various experts on each aspect of SRS imaging from around the world to provide an authoritative guide to this increasingly important imaging technique. This book is a comprehensive reference for researchers, faculty, postdoctoral researchers, and engineers. Includes every aspect from theoretic reviews of SRS spectroscopy to innovations in instrumentation and current applications of SRS microscopy Provides copious visual elements that illustrate key information, such as SRS images of various biological samples and instrument diagrams and schematics Edited by leading experts of SRS microscopy, with each chapter written by experts in their given topics