Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading

Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading

Author: Holm Altenbach

Publisher: Springer

Published: 2015-02-03

Total Pages: 261

ISBN-13: 3319146602

DOWNLOAD EBOOK

This book presents studies on the inelastic behavior of materials and structures under monotonic and cyclic loads. It focuses on the description of new effects like purely thermal cycles or cases of non-trivial damages. The various models are based on different approaches and methods and scaling aspects are taken into account. In addition to purely phenomenological models, the book also presents mechanisms-based approaches. It includes contributions written by leading authors from a host of different countries.


Book Synopsis Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading by : Holm Altenbach

Download or read book Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading written by Holm Altenbach and published by Springer. This book was released on 2015-02-03 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents studies on the inelastic behavior of materials and structures under monotonic and cyclic loads. It focuses on the description of new effects like purely thermal cycles or cases of non-trivial damages. The various models are based on different approaches and methods and scaling aspects are taken into account. In addition to purely phenomenological models, the book also presents mechanisms-based approaches. It includes contributions written by leading authors from a host of different countries.


Stability and Ductility of Steel Structures under Cyclic Loading

Stability and Ductility of Steel Structures under Cyclic Loading

Author: Yuhshi Fukumoto

Publisher: CRC Press

Published: 1991-12-07

Total Pages: 386

ISBN-13: 9780849301445

DOWNLOAD EBOOK

The U.S.-Japan Joint Seminar on Stability and Ductility of Steel Structures under Cyclic Loading was held in Osaka, Japan on July 1-3, 1991. This three-day seminar was devoted to five main topics: 1) materials properties and plasticity models, which featured experimental investigations of the material properties of structural steels and plasticity models of the material characteristics under dynamic and cyclic loading conditions; 2) experimental observations, which featured experimental studies of cyclic buckling behavior of steel structural members and frames subjected to dynamic and cyclic loading conditions; 3) analytical modeling, which discussed analytical modeling of the cyclic buckling behavior of steel structural members and frames; 4) design implementation, which emphasized earthquake engineering design of steel structures against cyclic buckling; and 5) future research needs, in which future analytical and experimental research needs on the behavior and design of steel structures subjected to dynamic and cyclic loading conditions were identified. This book contains 30 contributed papers presented at the seminar.


Book Synopsis Stability and Ductility of Steel Structures under Cyclic Loading by : Yuhshi Fukumoto

Download or read book Stability and Ductility of Steel Structures under Cyclic Loading written by Yuhshi Fukumoto and published by CRC Press. This book was released on 1991-12-07 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The U.S.-Japan Joint Seminar on Stability and Ductility of Steel Structures under Cyclic Loading was held in Osaka, Japan on July 1-3, 1991. This three-day seminar was devoted to five main topics: 1) materials properties and plasticity models, which featured experimental investigations of the material properties of structural steels and plasticity models of the material characteristics under dynamic and cyclic loading conditions; 2) experimental observations, which featured experimental studies of cyclic buckling behavior of steel structural members and frames subjected to dynamic and cyclic loading conditions; 3) analytical modeling, which discussed analytical modeling of the cyclic buckling behavior of steel structural members and frames; 4) design implementation, which emphasized earthquake engineering design of steel structures against cyclic buckling; and 5) future research needs, in which future analytical and experimental research needs on the behavior and design of steel structures subjected to dynamic and cyclic loading conditions were identified. This book contains 30 contributed papers presented at the seminar.


The Inelastic Behavior of Engineering Materials and Structures

The Inelastic Behavior of Engineering Materials and Structures

Author: Alfred M. Freudenthal

Publisher:

Published: 1964

Total Pages: 587

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis The Inelastic Behavior of Engineering Materials and Structures by : Alfred M. Freudenthal

Download or read book The Inelastic Behavior of Engineering Materials and Structures written by Alfred M. Freudenthal and published by . This book was released on 1964 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Inelastic Analysis of Solids and Structures

Inelastic Analysis of Solids and Structures

Author: M. Kojic

Publisher: Springer Science & Business Media

Published: 2005-07-28

Total Pages: 419

ISBN-13: 3540265074

DOWNLOAD EBOOK

Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.


Book Synopsis Inelastic Analysis of Solids and Structures by : M. Kojic

Download or read book Inelastic Analysis of Solids and Structures written by M. Kojic and published by Springer Science & Business Media. This book was released on 2005-07-28 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.


The Inelastic Behavior of Engineering Materials and Structures

The Inelastic Behavior of Engineering Materials and Structures

Author: Alfred Martin Freudenthal

Publisher:

Published: 1950

Total Pages: 616

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis The Inelastic Behavior of Engineering Materials and Structures by : Alfred Martin Freudenthal

Download or read book The Inelastic Behavior of Engineering Materials and Structures written by Alfred Martin Freudenthal and published by . This book was released on 1950 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Inelasticity Of Materials: An Engineering Approach And A Practical Guide

Inelasticity Of Materials: An Engineering Approach And A Practical Guide

Author: Arun R Srinivasa

Publisher: World Scientific Publishing Company

Published: 2009-07-09

Total Pages: 569

ISBN-13: 9813107391

DOWNLOAD EBOOK

With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines.The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part.• This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity.• The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models.• This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements.• Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve.• A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects.• The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.


Book Synopsis Inelasticity Of Materials: An Engineering Approach And A Practical Guide by : Arun R Srinivasa

Download or read book Inelasticity Of Materials: An Engineering Approach And A Practical Guide written by Arun R Srinivasa and published by World Scientific Publishing Company. This book was released on 2009-07-09 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines.The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part.• This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity.• The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models.• This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements.• Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve.• A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects.• The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.


Modeling of Inelastic Behavior of RC Structures Under Seismic Loads

Modeling of Inelastic Behavior of RC Structures Under Seismic Loads

Author: P. Benson Shing

Publisher: ASCE Publications

Published: 2001-01-01

Total Pages: 636

ISBN-13: 9780784474969

DOWNLOAD EBOOK

Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.


Book Synopsis Modeling of Inelastic Behavior of RC Structures Under Seismic Loads by : P. Benson Shing

Download or read book Modeling of Inelastic Behavior of RC Structures Under Seismic Loads written by P. Benson Shing and published by ASCE Publications. This book was released on 2001-01-01 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.


Computational Modelling of Concrete and Concrete Structures

Computational Modelling of Concrete and Concrete Structures

Author: Günther Meschke

Publisher: CRC Press

Published: 2022-05-22

Total Pages: 1500

ISBN-13: 100064474X

DOWNLOAD EBOOK

Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.


Book Synopsis Computational Modelling of Concrete and Concrete Structures by : Günther Meschke

Download or read book Computational Modelling of Concrete and Concrete Structures written by Günther Meschke and published by CRC Press. This book was released on 2022-05-22 with total page 1500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.


Inelastic Behavior of Structural Metals Under Complex Cyclic Loadings

Inelastic Behavior of Structural Metals Under Complex Cyclic Loadings

Author: H. R. Jhansale

Publisher:

Published: 1977

Total Pages: 8

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Inelastic Behavior of Structural Metals Under Complex Cyclic Loadings by : H. R. Jhansale

Download or read book Inelastic Behavior of Structural Metals Under Complex Cyclic Loadings written by H. R. Jhansale and published by . This book was released on 1977 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Design & Analysis

Design & Analysis

Author: Liu Cengdian

Publisher: Elsevier

Published: 2016-06-03

Total Pages: 1841

ISBN-13: 1483191125

DOWNLOAD EBOOK

Pressure Vessel Technology, Volume 3 reviews the practices and trends in pressure vessel technology. This book discusses the tremendous progress in the various fields of pressure vessel technology, including fabrication techniques, ferrous materials, and life expectancy to assure structural integrity. Organized into 11 chapters, this compilation of papers begins with an overview of the fabrication techniques in pressure vessel technology. This text then examines the requirements of the chemical industry for the prevention of catastrophic failure of pressure components. Other chapters consider the major development of pressure vessels for special purposes, high pressure vessels, materials for making pressure vessels, and pressure vessel codes. This book discusses as well the seismic design in the field of pressure vessels and pipings. The final chapter deals with buckling resistance under seismic motions for thin-walled cylindrical vessels, of which predominant mode of failure is shear buckling and bending under horizontal earthquake loadings. This book is a valuable resource for mechanical engineers, project managers, and scientists.


Book Synopsis Design & Analysis by : Liu Cengdian

Download or read book Design & Analysis written by Liu Cengdian and published by Elsevier. This book was released on 2016-06-03 with total page 1841 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressure Vessel Technology, Volume 3 reviews the practices and trends in pressure vessel technology. This book discusses the tremendous progress in the various fields of pressure vessel technology, including fabrication techniques, ferrous materials, and life expectancy to assure structural integrity. Organized into 11 chapters, this compilation of papers begins with an overview of the fabrication techniques in pressure vessel technology. This text then examines the requirements of the chemical industry for the prevention of catastrophic failure of pressure components. Other chapters consider the major development of pressure vessels for special purposes, high pressure vessels, materials for making pressure vessels, and pressure vessel codes. This book discusses as well the seismic design in the field of pressure vessels and pipings. The final chapter deals with buckling resistance under seismic motions for thin-walled cylindrical vessels, of which predominant mode of failure is shear buckling and bending under horizontal earthquake loadings. This book is a valuable resource for mechanical engineers, project managers, and scientists.