Introduction to Orbital Perturbations

Introduction to Orbital Perturbations

Author: James M. Longuski

Publisher: Springer Nature

Published: 2022-03-01

Total Pages: 349

ISBN-13: 3030897583

DOWNLOAD EBOOK

This textbook provides details of the derivation of Lagrange's planetary equations and of the closely related Gauss's variational equations, thereby covering a sorely needed topic in existing literature. Analytical solutions can help verify the results of numerical work, giving one confidence that his or her analysis is correct. The authors—all experienced experts in astrodynamics and space missions—take on the massive derivation problem step by step in order to help readers identify and understand possible analytical solutions in their own endeavors. The stages are elementary yet rigorous; suggested student research project topics are provided. After deriving the variational equations, the authors apply them to many interesting problems, including the Earth-Moon system, the effect of an oblate planet, the perturbation of Mercury's orbit due to General Relativity, and the perturbation due to atmospheric drag. Along the way, they introduce several useful techniques such as averaging, Poincaré's method of small parameters, and variation of parameters. In the end, this textbook will help students, practicing engineers, and professionals across the fields of astrodynamics, astronomy, dynamics, physics, planetary science, spacecraft missions, and others. “An extensive, detailed, yet still easy-to-follow presentation of the field of orbital perturbations.” - Prof. Hanspeter Schaub, Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder “This book, based on decades of teaching experience, is an invaluable resource for aerospace engineering students and practitioners alike who need an in-depth understanding of the equations they use.” - Dr. Jean Albert Kéchichian, The Aerospace Corporation, Retired “Today we look at perturbations through the lens of the modern computer. But knowing the why and the how is equally important. In this well organized and thorough compendium of equations and derivations, the authors bring some of the relevant gems from the past back into the contemporary literature.” - Dr. David A Vallado, Senior Research Astrodynamicist, COMSPOC “The book presentation is with the thoroughness that one always sees with these authors. Their theoretical development is followed with a set of Earth orbiting and Solar System examples demonstrating the application of Lagrange’s planetary equations for systems with both conservative and nonconservative forces, some of which are not seen in orbital mechanics books.” - Prof. Kyle T. Alfriend, University Distinguished Professor, Texas A&M University


Book Synopsis Introduction to Orbital Perturbations by : James M. Longuski

Download or read book Introduction to Orbital Perturbations written by James M. Longuski and published by Springer Nature. This book was released on 2022-03-01 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides details of the derivation of Lagrange's planetary equations and of the closely related Gauss's variational equations, thereby covering a sorely needed topic in existing literature. Analytical solutions can help verify the results of numerical work, giving one confidence that his or her analysis is correct. The authors—all experienced experts in astrodynamics and space missions—take on the massive derivation problem step by step in order to help readers identify and understand possible analytical solutions in their own endeavors. The stages are elementary yet rigorous; suggested student research project topics are provided. After deriving the variational equations, the authors apply them to many interesting problems, including the Earth-Moon system, the effect of an oblate planet, the perturbation of Mercury's orbit due to General Relativity, and the perturbation due to atmospheric drag. Along the way, they introduce several useful techniques such as averaging, Poincaré's method of small parameters, and variation of parameters. In the end, this textbook will help students, practicing engineers, and professionals across the fields of astrodynamics, astronomy, dynamics, physics, planetary science, spacecraft missions, and others. “An extensive, detailed, yet still easy-to-follow presentation of the field of orbital perturbations.” - Prof. Hanspeter Schaub, Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder “This book, based on decades of teaching experience, is an invaluable resource for aerospace engineering students and practitioners alike who need an in-depth understanding of the equations they use.” - Dr. Jean Albert Kéchichian, The Aerospace Corporation, Retired “Today we look at perturbations through the lens of the modern computer. But knowing the why and the how is equally important. In this well organized and thorough compendium of equations and derivations, the authors bring some of the relevant gems from the past back into the contemporary literature.” - Dr. David A Vallado, Senior Research Astrodynamicist, COMSPOC “The book presentation is with the thoroughness that one always sees with these authors. Their theoretical development is followed with a set of Earth orbiting and Solar System examples demonstrating the application of Lagrange’s planetary equations for systems with both conservative and nonconservative forces, some of which are not seen in orbital mechanics books.” - Prof. Kyle T. Alfriend, University Distinguished Professor, Texas A&M University


Orbital Mechanics for Engineering Students

Orbital Mechanics for Engineering Students

Author: Howard D Curtis

Publisher: Elsevier

Published: 2009-10-26

Total Pages: 744

ISBN-13: 0080887848

DOWNLOAD EBOOK

Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton’s laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler’s equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 New examples and homework problems


Book Synopsis Orbital Mechanics for Engineering Students by : Howard D Curtis

Download or read book Orbital Mechanics for Engineering Students written by Howard D Curtis and published by Elsevier. This book was released on 2009-10-26 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton’s laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler’s equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 New examples and homework problems


Orbital Mechanics

Orbital Mechanics

Author: Vladimir A. Chobotov

Publisher: AIAA

Published: 2002

Total Pages: 490

ISBN-13: 9781600860973

DOWNLOAD EBOOK

Annotation Designed to be used as a graduate student textbook and a ready reference for the busy professional, this third edition of "Orbital Mechanics is structured so that you can easily look up the things you need to know. This edition includes more recent developments in space exploration (e.g. Galileo, Cassini, Mars Odyssey missions). Also, the chapter on space debris was rewritten to reflect new developments in that area. The well-organized chapters cover every basic aspect of orbital mechanics, from celestial relationships to the problems of space debris. The book is clearly written in language familiar to aerospace professionals and graduate students, with all of the equations, diagrams, and graphs you would like to have close at hand. An updated software package on CD-ROM includes: HW Solutions, which presents a range of viewpoints and guidelines for solving selected problems in the text; Orbital Calculator, which provides an interactive environment for the generation of Keplerian orbits, orbital transfer maneuvers, and animation of ellipses, hyperbolas, 'and interplanetary orbits; and Orbital Mechanics Solutions


Book Synopsis Orbital Mechanics by : Vladimir A. Chobotov

Download or read book Orbital Mechanics written by Vladimir A. Chobotov and published by AIAA. This book was released on 2002 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Designed to be used as a graduate student textbook and a ready reference for the busy professional, this third edition of "Orbital Mechanics is structured so that you can easily look up the things you need to know. This edition includes more recent developments in space exploration (e.g. Galileo, Cassini, Mars Odyssey missions). Also, the chapter on space debris was rewritten to reflect new developments in that area. The well-organized chapters cover every basic aspect of orbital mechanics, from celestial relationships to the problems of space debris. The book is clearly written in language familiar to aerospace professionals and graduate students, with all of the equations, diagrams, and graphs you would like to have close at hand. An updated software package on CD-ROM includes: HW Solutions, which presents a range of viewpoints and guidelines for solving selected problems in the text; Orbital Calculator, which provides an interactive environment for the generation of Keplerian orbits, orbital transfer maneuvers, and animation of ellipses, hyperbolas, 'and interplanetary orbits; and Orbital Mechanics Solutions


Orbital Motion in Strongly Perturbed Environments

Orbital Motion in Strongly Perturbed Environments

Author: Daniel J. Scheeres

Publisher: Springer

Published: 2016-06-24

Total Pages: 390

ISBN-13: 3642032567

DOWNLOAD EBOOK

The investigation of minor solar system bodies, such as comets and asteroids, using spacecraft requires an understanding of orbital motion in strongly perturbed environments. The solutions to a wide range of complex and challenging problems in this field are reviewed in this comprehensive and authoritative work.


Book Synopsis Orbital Motion in Strongly Perturbed Environments by : Daniel J. Scheeres

Download or read book Orbital Motion in Strongly Perturbed Environments written by Daniel J. Scheeres and published by Springer. This book was released on 2016-06-24 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The investigation of minor solar system bodies, such as comets and asteroids, using spacecraft requires an understanding of orbital motion in strongly perturbed environments. The solutions to a wide range of complex and challenging problems in this field are reviewed in this comprehensive and authoritative work.


An Introduction to Celestial Mechanics

An Introduction to Celestial Mechanics

Author: Richard Fitzpatrick

Publisher: Cambridge University Press

Published: 2012-06-28

Total Pages: 277

ISBN-13: 1139510940

DOWNLOAD EBOOK

This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.


Book Synopsis An Introduction to Celestial Mechanics by : Richard Fitzpatrick

Download or read book An Introduction to Celestial Mechanics written by Richard Fitzpatrick and published by Cambridge University Press. This book was released on 2012-06-28 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.


Fundamentals of Astrodynamics

Fundamentals of Astrodynamics

Author: Roger R. Bate

Publisher: Courier Corporation

Published: 1971-01-01

Total Pages: 484

ISBN-13: 9780486600611

DOWNLOAD EBOOK

Teaching text developed by U.S. Air Force Academy and designed as a first course emphasizes the universal variable formulation. Develops the basic two-body and n-body equations of motion; orbit determination; classical orbital elements, coordinate transformations; differential correction; more. Includes specialized applications to lunar and interplanetary flight, example problems, exercises. 1971 edition.


Book Synopsis Fundamentals of Astrodynamics by : Roger R. Bate

Download or read book Fundamentals of Astrodynamics written by Roger R. Bate and published by Courier Corporation. This book was released on 1971-01-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaching text developed by U.S. Air Force Academy and designed as a first course emphasizes the universal variable formulation. Develops the basic two-body and n-body equations of motion; orbit determination; classical orbital elements, coordinate transformations; differential correction; more. Includes specialized applications to lunar and interplanetary flight, example problems, exercises. 1971 edition.


Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction

Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction

Author: Martín Lara

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-05-10

Total Pages: 315

ISBN-13: 3110667320

DOWNLOAD EBOOK

"Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations"--Print version, page 4 of cover.


Book Synopsis Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction by : Martín Lara

Download or read book Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction written by Martín Lara and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-05-10 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations"--Print version, page 4 of cover.


Orbital Mechanics

Orbital Mechanics

Author: Tom Logsdon

Publisher: John Wiley & Sons

Published: 1997-10-24

Total Pages: 292

ISBN-13: 9780471146360

DOWNLOAD EBOOK

Ein lebendiger Abriß der Theorie der Umlaufbahnen, geschrieben von einem Spezialisten, der für Computersimulationen und Systemanalysen der Saturn-V-Rakete, des Projektes Skylab und vieler anderer Projekte zuständig war. Die Diskussion umfaßt auch unkonventionelle Ansätze und Paradoxa. Schwerpunkte liegen unter anderem auf Raketenantrieben, Optimierung des Verhältnisses zwischen Nutzlast und Treibstoffverbrauch und der Wechselwirkung zwischen Raumfahrzeugen und Raumobjekten. (11/97)


Book Synopsis Orbital Mechanics by : Tom Logsdon

Download or read book Orbital Mechanics written by Tom Logsdon and published by John Wiley & Sons. This book was released on 1997-10-24 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein lebendiger Abriß der Theorie der Umlaufbahnen, geschrieben von einem Spezialisten, der für Computersimulationen und Systemanalysen der Saturn-V-Rakete, des Projektes Skylab und vieler anderer Projekte zuständig war. Die Diskussion umfaßt auch unkonventionelle Ansätze und Paradoxa. Schwerpunkte liegen unter anderem auf Raketenantrieben, Optimierung des Verhältnisses zwischen Nutzlast und Treibstoffverbrauch und der Wechselwirkung zwischen Raumfahrzeugen und Raumobjekten. (11/97)


Statistical Orbit Determination

Statistical Orbit Determination

Author: Bob Schutz

Publisher: Elsevier

Published: 2004-06-26

Total Pages: 563

ISBN-13: 0080541739

DOWNLOAD EBOOK

Statistical Orbit Determination presents fundmentals of orbit determination--from weighted least squares approaches (Gauss) to today's high-speed computer algorithms that provide accuracy within a few centimeters. Numerous examples and problems are provided to enhance readers' understanding of the material. Covers such topics as coordinate and time systems, square root filters, process noise techniques, and the use of fictitious parameters for absorbing un-modeled and incorrectly modeled forces acting on a satellite. Examples and exercises serve to illustrate the principles throughout each chapter.


Book Synopsis Statistical Orbit Determination by : Bob Schutz

Download or read book Statistical Orbit Determination written by Bob Schutz and published by Elsevier. This book was released on 2004-06-26 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Orbit Determination presents fundmentals of orbit determination--from weighted least squares approaches (Gauss) to today's high-speed computer algorithms that provide accuracy within a few centimeters. Numerous examples and problems are provided to enhance readers' understanding of the material. Covers such topics as coordinate and time systems, square root filters, process noise techniques, and the use of fictitious parameters for absorbing un-modeled and incorrectly modeled forces acting on a satellite. Examples and exercises serve to illustrate the principles throughout each chapter.


Optimal Control with Aerospace Applications

Optimal Control with Aerospace Applications

Author: James M Longuski

Publisher: Springer Science & Business Media

Published: 2013-11-04

Total Pages: 286

ISBN-13: 1461489458

DOWNLOAD EBOOK

Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!


Book Synopsis Optimal Control with Aerospace Applications by : James M Longuski

Download or read book Optimal Control with Aerospace Applications written by James M Longuski and published by Springer Science & Business Media. This book was released on 2013-11-04 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!