Lecture Notes in Applied Differential Equations of Mathematical Physics

Lecture Notes in Applied Differential Equations of Mathematical Physics

Author: Luiz C. L. Botelho

Publisher: World Scientific

Published: 2008

Total Pages: 340

ISBN-13: 9812814582

DOWNLOAD EBOOK

Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic LangevinOCoturbulent partial differential equations.An errata II to the book is available. Click here to download the pdf.


Book Synopsis Lecture Notes in Applied Differential Equations of Mathematical Physics by : Luiz C. L. Botelho

Download or read book Lecture Notes in Applied Differential Equations of Mathematical Physics written by Luiz C. L. Botelho and published by World Scientific. This book was released on 2008 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic LangevinOCoturbulent partial differential equations.An errata II to the book is available. Click here to download the pdf.


Lectures on the Differential Equations of Mathematical Physics

Lectures on the Differential Equations of Mathematical Physics

Author: Gerhard Freiling

Publisher: Nova Science Pub Incorporated

Published: 2008

Total Pages: 304

ISBN-13: 9781604569285

DOWNLOAD EBOOK

The theory of partial differential equations of mathematical physics has been one of the most important fields of study in applied mathematics. This is essentially due to the frequent occurrence of partial differential equations in many branches of natural sciences and engineering. The present lecture notes have been written for the purpose of presenting an approach based mainly on the mathematical problems and their related solutions. The primary concern, therefore, is not with the general theory, but to provide students with the fundamental concepts, the underlying principles, and the techniques and methods of solution of partial differential equations of mathematical physics. One of the authors main goals is to present a fairly elementary and complete introduction to this subject which is suitable for the "first reading" and accessible for students of different specialities. The material in these lecture notes has been developed and extended from a set of lectures given at Saratov State University and reflects partially the research interests of the authors. It is intended for graduate and advanced undergraduate students in applied mathematics, computer sciences, physics, engineering, and other specialities. The prerequisites for its study are a standard basic course in mathematical analysis or advanced calculus, including elementary ordinary differential equations. Although various differential equations and problems considered in these lecture notes are physically motivated, a knowledge of the physics involved is not necessary for understanding the mathematical aspects of the solution of these problems.


Book Synopsis Lectures on the Differential Equations of Mathematical Physics by : Gerhard Freiling

Download or read book Lectures on the Differential Equations of Mathematical Physics written by Gerhard Freiling and published by Nova Science Pub Incorporated. This book was released on 2008 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of partial differential equations of mathematical physics has been one of the most important fields of study in applied mathematics. This is essentially due to the frequent occurrence of partial differential equations in many branches of natural sciences and engineering. The present lecture notes have been written for the purpose of presenting an approach based mainly on the mathematical problems and their related solutions. The primary concern, therefore, is not with the general theory, but to provide students with the fundamental concepts, the underlying principles, and the techniques and methods of solution of partial differential equations of mathematical physics. One of the authors main goals is to present a fairly elementary and complete introduction to this subject which is suitable for the "first reading" and accessible for students of different specialities. The material in these lecture notes has been developed and extended from a set of lectures given at Saratov State University and reflects partially the research interests of the authors. It is intended for graduate and advanced undergraduate students in applied mathematics, computer sciences, physics, engineering, and other specialities. The prerequisites for its study are a standard basic course in mathematical analysis or advanced calculus, including elementary ordinary differential equations. Although various differential equations and problems considered in these lecture notes are physically motivated, a knowledge of the physics involved is not necessary for understanding the mathematical aspects of the solution of these problems.


Differential Geometry, Differential Equations, and Mathematical Physics

Differential Geometry, Differential Equations, and Mathematical Physics

Author: Maria Ulan

Publisher: Springer Nature

Published: 2021-02-12

Total Pages: 231

ISBN-13: 3030632539

DOWNLOAD EBOOK

This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.


Book Synopsis Differential Geometry, Differential Equations, and Mathematical Physics by : Maria Ulan

Download or read book Differential Geometry, Differential Equations, and Mathematical Physics written by Maria Ulan and published by Springer Nature. This book was released on 2021-02-12 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.


Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev

Publisher: Courier Corporation

Published: 1964-01-01

Total Pages: 452

ISBN-13: 9780486659640

DOWNLOAD EBOOK

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.


Book Synopsis Partial Differential Equations of Mathematical Physics by : S. L. Sobolev

Download or read book Partial Differential Equations of Mathematical Physics written by S. L. Sobolev and published by Courier Corporation. This book was released on 1964-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.


Differential Equations and Asymptotic Theory in Mathematical Physics

Differential Equations and Asymptotic Theory in Mathematical Physics

Author: Chen Hua

Publisher: World Scientific

Published: 2004-10-18

Total Pages: 388

ISBN-13: 9814481688

DOWNLOAD EBOOK

This lecture notes volume encompasses four indispensable mini courses delivered at Wuhan University with each course containing the material from five one-hour lectures. Readers are brought up to date with exciting recent developments in the areas of asymptotic analysis, singular perturbations, orthogonal polynomials, and the application of Gevrey asymptotic expansion to holomorphic dynamical systems. The book also features important invited papers presented at the conference. Leading experts in the field cover a diverse range of topics from partial differential equations arising in cancer biology to transonic shock waves. The proceedings have been selected for coverage in: • Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings) • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings) • CC Proceedings — Engineering & Physical Sciences Contents:Lectures on Orthogonal Polynomials (M E H Ismail)Gevrey Asymptotics and Applications to Holomorphic Ordinary Differential Equations (J-P Ramis)Spikes for Singularly Perturbed Reaction-Diffusion Systems and Carrier's Problem (M J Ward)Five Lectures on Asymptotic Theory (R S C Wong)A Perturbation Model for the Growth of Type III-V Compound Crystals (C S Bohun et al.)Asymptotic Behaviour of the Trace for Schrödinger Operator on Irregular Domains (H Chen & C Yu)Limitations and Modifications of Black-Scholes Model (L S Jiang & X M Ren)Exact Boundary Controllability of Unsteady Flows in a Network of Open Canals (T T Li)Hierarchy of Partial Differential Equations and Fundamental Solutions Associated with Summable Formal Solutions of a Partial Differential Equations of non Kowalevski Type (M Miyake & K Ichinobe)On the Singularities of Solutions of Nonlinear Partial Differential Equations in the Complex Domain, II (H Tahara)Identifying Corrosion Boundary by Perturbation Method (Y J Tan & X X Chen)Existence and Stability of Lamellar and Wriggled Lamellar Solutions in the Diblock Copolymer Problem (J C Wei) Readership: Graduate students, researchers, academics and lecturers in mathematical physics. Keywords:Asymptotic Theory;Special Functions;Orthogonal Polynomials;Singular Perturbations;Reaction Diffusion Equations;Gevrey Asymptotics;Stationary Phase Approximation;WKB Method


Book Synopsis Differential Equations and Asymptotic Theory in Mathematical Physics by : Chen Hua

Download or read book Differential Equations and Asymptotic Theory in Mathematical Physics written by Chen Hua and published by World Scientific. This book was released on 2004-10-18 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture notes volume encompasses four indispensable mini courses delivered at Wuhan University with each course containing the material from five one-hour lectures. Readers are brought up to date with exciting recent developments in the areas of asymptotic analysis, singular perturbations, orthogonal polynomials, and the application of Gevrey asymptotic expansion to holomorphic dynamical systems. The book also features important invited papers presented at the conference. Leading experts in the field cover a diverse range of topics from partial differential equations arising in cancer biology to transonic shock waves. The proceedings have been selected for coverage in: • Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings) • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings) • CC Proceedings — Engineering & Physical Sciences Contents:Lectures on Orthogonal Polynomials (M E H Ismail)Gevrey Asymptotics and Applications to Holomorphic Ordinary Differential Equations (J-P Ramis)Spikes for Singularly Perturbed Reaction-Diffusion Systems and Carrier's Problem (M J Ward)Five Lectures on Asymptotic Theory (R S C Wong)A Perturbation Model for the Growth of Type III-V Compound Crystals (C S Bohun et al.)Asymptotic Behaviour of the Trace for Schrödinger Operator on Irregular Domains (H Chen & C Yu)Limitations and Modifications of Black-Scholes Model (L S Jiang & X M Ren)Exact Boundary Controllability of Unsteady Flows in a Network of Open Canals (T T Li)Hierarchy of Partial Differential Equations and Fundamental Solutions Associated with Summable Formal Solutions of a Partial Differential Equations of non Kowalevski Type (M Miyake & K Ichinobe)On the Singularities of Solutions of Nonlinear Partial Differential Equations in the Complex Domain, II (H Tahara)Identifying Corrosion Boundary by Perturbation Method (Y J Tan & X X Chen)Existence and Stability of Lamellar and Wriggled Lamellar Solutions in the Diblock Copolymer Problem (J C Wei) Readership: Graduate students, researchers, academics and lecturers in mathematical physics. Keywords:Asymptotic Theory;Special Functions;Orthogonal Polynomials;Singular Perturbations;Reaction Diffusion Equations;Gevrey Asymptotics;Stationary Phase Approximation;WKB Method


Lecture Notes in Applied Differential Equations of Mathematical Physics

Lecture Notes in Applied Differential Equations of Mathematical Physics

Author: Luiz C. L. Botelho

Publisher: World Scientific

Published: 2008

Total Pages: 340

ISBN-13: 9812814574

DOWNLOAD EBOOK

Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic Langevin?turbulent partial differential equations.


Book Synopsis Lecture Notes in Applied Differential Equations of Mathematical Physics by : Luiz C. L. Botelho

Download or read book Lecture Notes in Applied Differential Equations of Mathematical Physics written by Luiz C. L. Botelho and published by World Scientific. This book was released on 2008 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic Langevin?turbulent partial differential equations.


Lecture Notes on Geometrical Aspects of Partial Differential Equations

Lecture Notes on Geometrical Aspects of Partial Differential Equations

Author: V V Zharinov

Publisher: World Scientific

Published: 1992-03-26

Total Pages: 372

ISBN-13: 9814513997

DOWNLOAD EBOOK

This book focuses on the properties of nonlinear systems of PDE with geometrical origin and the natural description in the language of infinite-dimensional differential geometry. The treatment is very informal and the theory is illustrated by various examples from mathematical physics. All necessary information about the infinite-dimensional geometry is given in the text. Contents:Introduction: Internal Geometry of PDE:Differential ManifoldsLie-Backlund MappingsLie-Backlund Fields and Infinitesimal SymmetriesCartan Forms, Currents and Conservation LawsC-Spectral Sequence. Further Properties of Conservation LawsTrivial Equations. The Formal Variational CalculusEvolution EquationsExternal Geometry of PDE:Differential SubmanifoldsNormal Projection. External Fields and FormsTrivial Ambient Differential ManifoldsThe Characteristic MappingThe Green's FormulaLow-Dimensional Conservation LawsBacklund CorrespondenceFurther Studies:Lagrangian FormalismHamiltonian EquationsExample: The Nambu's StringAppendix Readership: Graduate students and researchers in mathematical physics. keywords:Differential Manifolds;Lie-Bäcklund Mappings;Cartan Forms;Currents;Conservation Laws;Lagrangian Formation;Hamiltonian Equations


Book Synopsis Lecture Notes on Geometrical Aspects of Partial Differential Equations by : V V Zharinov

Download or read book Lecture Notes on Geometrical Aspects of Partial Differential Equations written by V V Zharinov and published by World Scientific. This book was released on 1992-03-26 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the properties of nonlinear systems of PDE with geometrical origin and the natural description in the language of infinite-dimensional differential geometry. The treatment is very informal and the theory is illustrated by various examples from mathematical physics. All necessary information about the infinite-dimensional geometry is given in the text. Contents:Introduction: Internal Geometry of PDE:Differential ManifoldsLie-Backlund MappingsLie-Backlund Fields and Infinitesimal SymmetriesCartan Forms, Currents and Conservation LawsC-Spectral Sequence. Further Properties of Conservation LawsTrivial Equations. The Formal Variational CalculusEvolution EquationsExternal Geometry of PDE:Differential SubmanifoldsNormal Projection. External Fields and FormsTrivial Ambient Differential ManifoldsThe Characteristic MappingThe Green's FormulaLow-Dimensional Conservation LawsBacklund CorrespondenceFurther Studies:Lagrangian FormalismHamiltonian EquationsExample: The Nambu's StringAppendix Readership: Graduate students and researchers in mathematical physics. keywords:Differential Manifolds;Lie-Bäcklund Mappings;Cartan Forms;Currents;Conservation Laws;Lagrangian Formation;Hamiltonian Equations


Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations

Author: James Kirkwood

Publisher: Academic Press

Published: 2012-01-20

Total Pages: 431

ISBN-13: 0123869110

DOWNLOAD EBOOK

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.


Book Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood

Download or read book Mathematical Physics with Partial Differential Equations written by James Kirkwood and published by Academic Press. This book was released on 2012-01-20 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.


Applied Differential Equations

Applied Differential Equations

Author: Vladimir A. Dobrushkin

Publisher: CRC Press

Published: 2022-09-21

Total Pages: 706

ISBN-13: 1000606244

DOWNLOAD EBOOK

This book started as a collection of lecture notes for a course in differential equations taught by the Division of Applied Mathematics at Brown University. To some extent, it is a result of collective insights given by almost every instructor who taught such a course over the last 15 years. Therefore, the material and its presentation covered in this book were practically tested for many years. This text is designed for a two-semester sophomore or junior level course in differential equations. It offers novel approaches in presentation and utilization of computer capabilities. This text intends to provide a solid background in differential equations for students majoring in a breadth of fields. Differential equations are described in the context of applications. The author stresses differential equations constitute an essential part of modeling by showing their applications, including numerical algorithms and syntax of the four most popular software packages. Students learn how to formulate a mathematical model, how to solve differential equations (analytically or numerically), how to analyze them qualitatively, and how to interpret the results. In writing this textbook, the author aims to assist instructors and students through: Showing a course in differential equations is essential for modeling real-life phenomena Stressing the mastery of traditional solution techniques and presenting effective methods, including reliable numerical approximations Providing qualitative analysis of ordinary differential equations. The reader should get an idea of how all solutions to the given problem behave, what are their validity intervals, whether there are oscillations, vertical or horizontal asymptotes, and what is their long-term behavior The reader will learn various methods of solving, analysis, visualization, and approximation, exploiting the capabilities of computers Introduces and employs MapleTM, Mathematica®, MatLab®, and Maxima This textbook facilitates the development of the student’s skills to model real-world problems Ordinary and partial differential equations is a classical subject that has been studied for about 300 years. The beauty and utility of differential equations and their application in mathematics, biology, chemistry, computer science, economics, engineering, geology, neuroscience, physics, the life sciences, and other fields reaffirm their inclusion in myriad curricula. A great number of examples and exercises make this text well suited for self-study or for traditional use by a lecturer in class. Therefore, this textbook addresses the needs of two levels of audience, the beginning and the advanced.


Book Synopsis Applied Differential Equations by : Vladimir A. Dobrushkin

Download or read book Applied Differential Equations written by Vladimir A. Dobrushkin and published by CRC Press. This book was released on 2022-09-21 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book started as a collection of lecture notes for a course in differential equations taught by the Division of Applied Mathematics at Brown University. To some extent, it is a result of collective insights given by almost every instructor who taught such a course over the last 15 years. Therefore, the material and its presentation covered in this book were practically tested for many years. This text is designed for a two-semester sophomore or junior level course in differential equations. It offers novel approaches in presentation and utilization of computer capabilities. This text intends to provide a solid background in differential equations for students majoring in a breadth of fields. Differential equations are described in the context of applications. The author stresses differential equations constitute an essential part of modeling by showing their applications, including numerical algorithms and syntax of the four most popular software packages. Students learn how to formulate a mathematical model, how to solve differential equations (analytically or numerically), how to analyze them qualitatively, and how to interpret the results. In writing this textbook, the author aims to assist instructors and students through: Showing a course in differential equations is essential for modeling real-life phenomena Stressing the mastery of traditional solution techniques and presenting effective methods, including reliable numerical approximations Providing qualitative analysis of ordinary differential equations. The reader should get an idea of how all solutions to the given problem behave, what are their validity intervals, whether there are oscillations, vertical or horizontal asymptotes, and what is their long-term behavior The reader will learn various methods of solving, analysis, visualization, and approximation, exploiting the capabilities of computers Introduces and employs MapleTM, Mathematica®, MatLab®, and Maxima This textbook facilitates the development of the student’s skills to model real-world problems Ordinary and partial differential equations is a classical subject that has been studied for about 300 years. The beauty and utility of differential equations and their application in mathematics, biology, chemistry, computer science, economics, engineering, geology, neuroscience, physics, the life sciences, and other fields reaffirm their inclusion in myriad curricula. A great number of examples and exercises make this text well suited for self-study or for traditional use by a lecturer in class. Therefore, this textbook addresses the needs of two levels of audience, the beginning and the advanced.


Differential Equations with Applications in Biology, Physics, and Engineering

Differential Equations with Applications in Biology, Physics, and Engineering

Author: Goldstein

Publisher: CRC Press

Published: 1991-06-24

Total Pages: 358

ISBN-13: 9780824785710

DOWNLOAD EBOOK

Suitable as a textbook for a graduate seminar in mathematical modelling, and as a resource for scientists in a wide range of disciplines. Presents 22 lectures from an international conference in Leibnitz, Austria (no date mentioned), explaining recent developments and results in differential equatio


Book Synopsis Differential Equations with Applications in Biology, Physics, and Engineering by : Goldstein

Download or read book Differential Equations with Applications in Biology, Physics, and Engineering written by Goldstein and published by CRC Press. This book was released on 1991-06-24 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable as a textbook for a graduate seminar in mathematical modelling, and as a resource for scientists in a wide range of disciplines. Presents 22 lectures from an international conference in Leibnitz, Austria (no date mentioned), explaining recent developments and results in differential equatio