LECTURE NOTES ON IDEAL MAGNETOHYDRODYNAMICS

LECTURE NOTES ON IDEAL MAGNETOHYDRODYNAMICS

Author: J. P. Goedbloed

Publisher:

Published: 1983

Total Pages: 283

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis LECTURE NOTES ON IDEAL MAGNETOHYDRODYNAMICS by : J. P. Goedbloed

Download or read book LECTURE NOTES ON IDEAL MAGNETOHYDRODYNAMICS written by J. P. Goedbloed and published by . This book was released on 1983 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Lectures in Magnetohydrodynamics

Lectures in Magnetohydrodynamics

Author: Dalton D. Schnack

Publisher: Springer

Published: 2009-08-11

Total Pages: 317

ISBN-13: 3642006884

DOWNLOAD EBOOK

Magnetohydrodynamics, or MHD, is a theoretical way of describing the statics and dynamics of electrically conducting uids. The most important of these uids occurring in both nature and the laboratory are ionized gases, called plasmas. These have the simultaneous properties of conducting electricity and being electrically charge neutral on almost all length scales. The study of these gases is called plasma physics. MHD is the poor cousin of plasma physics. It is the simplest theory of plasma dynamics. In most introductory courses, it is usually afforded a short chapter or lecture at most: Alfven ́ waves, the kink mode, and that is it. (Now, on to Landau damping!) In advanced plasma courses, such as those dealing with waves or kinetic theory, it is given an even more cursory treatment, a brief mention on the way to things more profound and interesting. (It is just MHD! Besides, real plasma phy- cists do kinetic theory!) Nonetheless, MHD is an indispensable tool in all applications of plasma physics.


Book Synopsis Lectures in Magnetohydrodynamics by : Dalton D. Schnack

Download or read book Lectures in Magnetohydrodynamics written by Dalton D. Schnack and published by Springer. This book was released on 2009-08-11 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetohydrodynamics, or MHD, is a theoretical way of describing the statics and dynamics of electrically conducting uids. The most important of these uids occurring in both nature and the laboratory are ionized gases, called plasmas. These have the simultaneous properties of conducting electricity and being electrically charge neutral on almost all length scales. The study of these gases is called plasma physics. MHD is the poor cousin of plasma physics. It is the simplest theory of plasma dynamics. In most introductory courses, it is usually afforded a short chapter or lecture at most: Alfven ́ waves, the kink mode, and that is it. (Now, on to Landau damping!) In advanced plasma courses, such as those dealing with waves or kinetic theory, it is given an even more cursory treatment, a brief mention on the way to things more profound and interesting. (It is just MHD! Besides, real plasma phy- cists do kinetic theory!) Nonetheless, MHD is an indispensable tool in all applications of plasma physics.


Principles of Magnetohydrodynamics

Principles of Magnetohydrodynamics

Author: J. P. Goedbloed

Publisher: Cambridge University Press

Published: 2004-08-05

Total Pages: 644

ISBN-13: 9780521626071

DOWNLOAD EBOOK

This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.


Book Synopsis Principles of Magnetohydrodynamics by : J. P. Goedbloed

Download or read book Principles of Magnetohydrodynamics written by J. P. Goedbloed and published by Cambridge University Press. This book was released on 2004-08-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.


Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws

Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws

Author: Gary Webb

Publisher: Springer

Published: 2018-02-05

Total Pages: 301

ISBN-13: 3319725114

DOWNLOAD EBOOK

This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels’ theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman’s direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfvén simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.


Book Synopsis Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws by : Gary Webb

Download or read book Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws written by Gary Webb and published by Springer. This book was released on 2018-02-05 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels’ theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman’s direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfvén simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.


Ideal MHD

Ideal MHD

Author: Jeffrey P. Freidberg

Publisher: Cambridge University Press

Published: 2014-06-26

Total Pages: 743

ISBN-13: 1107006252

DOWNLOAD EBOOK

Comprehensive, self-contained, and clearly written, this book describes the macroscopic equilibrium and stability of high temperature plasmas.


Book Synopsis Ideal MHD by : Jeffrey P. Freidberg

Download or read book Ideal MHD written by Jeffrey P. Freidberg and published by Cambridge University Press. This book was released on 2014-06-26 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive, self-contained, and clearly written, this book describes the macroscopic equilibrium and stability of high temperature plasmas.


Lecture Notes on Turbulence

Lecture Notes on Turbulence

Author: Jackson R. Herring

Publisher: World Scientific

Published: 1989

Total Pages: 392

ISBN-13: 9789971508272

DOWNLOAD EBOOK

This book is a formal presentation of lectures given at the 1987 Summer School on Turbulence, held at the National Center for Atmospheric Research under the auspices of the Geophysical Turbulence Program. The lectures present in detail certain of the more challenging and interesting current turbulence research problems in engineering, meteorology, plasma physics, and mathematics. The lecturers-Uriel Frisch (Mathematics), Douglas Lilly (Meteorology), David Montgomery (Plasma Physics), and Hendrik Tennekes (Engineering) ? are distinguished for both their research contributions and their abilities to communicate these to students with enthusiasm. This book is distinguished by its simultaneous focus on the fundamentals of turbulent flows (in neutral and ionized fluids) and on a presentation of current research tools and topics in these fields.


Book Synopsis Lecture Notes on Turbulence by : Jackson R. Herring

Download or read book Lecture Notes on Turbulence written by Jackson R. Herring and published by World Scientific. This book was released on 1989 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a formal presentation of lectures given at the 1987 Summer School on Turbulence, held at the National Center for Atmospheric Research under the auspices of the Geophysical Turbulence Program. The lectures present in detail certain of the more challenging and interesting current turbulence research problems in engineering, meteorology, plasma physics, and mathematics. The lecturers-Uriel Frisch (Mathematics), Douglas Lilly (Meteorology), David Montgomery (Plasma Physics), and Hendrik Tennekes (Engineering) ? are distinguished for both their research contributions and their abilities to communicate these to students with enthusiasm. This book is distinguished by its simultaneous focus on the fundamentals of turbulent flows (in neutral and ionized fluids) and on a presentation of current research tools and topics in these fields.


An Introduction to Plasma Astrophysics and Magnetohydrodynamics

An Introduction to Plasma Astrophysics and Magnetohydrodynamics

Author: M. Goossens

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 215

ISBN-13: 9400710763

DOWNLOAD EBOOK

Most of the visible matter in the universe exists in the plasma state. Plasmas are of major importance for space physics, solar physics, and astrophysics. On Earth they are essential for magnetic controlled thermonuclear fusion. This textbook collects lecture notes from a one-semester course taught at the K.U. Leuven to advanced undergraduate students in applied mathematics and physics. A particular strength of this book is that it provides a low threshold introduction to plasmas with an emphasis on first principles and fundamental concepts and properties. The discussion of plasma models is to a large extent limited to Magnetohydrodynamics (MHD) with its merits and limitations clearly explained. MHD provides the students on their first encounter with plasmas, with a powerful plasma model that they can link to familiar classic fluid dynamics. The solar wind is studied as an example of hydrodynamics and MHD at work in solar physics and astrophysics.


Book Synopsis An Introduction to Plasma Astrophysics and Magnetohydrodynamics by : M. Goossens

Download or read book An Introduction to Plasma Astrophysics and Magnetohydrodynamics written by M. Goossens and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the visible matter in the universe exists in the plasma state. Plasmas are of major importance for space physics, solar physics, and astrophysics. On Earth they are essential for magnetic controlled thermonuclear fusion. This textbook collects lecture notes from a one-semester course taught at the K.U. Leuven to advanced undergraduate students in applied mathematics and physics. A particular strength of this book is that it provides a low threshold introduction to plasmas with an emphasis on first principles and fundamental concepts and properties. The discussion of plasma models is to a large extent limited to Magnetohydrodynamics (MHD) with its merits and limitations clearly explained. MHD provides the students on their first encounter with plasmas, with a powerful plasma model that they can link to familiar classic fluid dynamics. The solar wind is studied as an example of hydrodynamics and MHD at work in solar physics and astrophysics.


Space Plasma Simulation

Space Plasma Simulation

Author: Jörg Büchner

Publisher: Springer

Published: 2008-01-11

Total Pages: 363

ISBN-13: 3540365303

DOWNLOAD EBOOK

The aim of this book is twofold: to provide an introduction for newcomers to state of the art computer simulation techniques in space plasma physics and an overview of current developments. Computer simulation has reached a stage where it can be a highly useful tool for guiding theory and for making predictions of space plasma phenomena, ranging from microscopic to global scales. The various articles are arranged, as much as possible, according to the - derlying simulation technique, starting with the technique that makes the least number of assumptions: a fully kinetic approach which solves the coupled set of Maxwell’s equations for the electromagnetic ?eld and the equations of motion for a very large number of charged particles (electrons and ions) in this ?eld. Clearly, this is also the computationally most demanding model. Therefore, even with present day high performance computers, it is the most restrictive in terms of the space and time domain and the range of particle parameters that can be covered by the simulation experiments. It still makes sense, therefore, to also use models, which due to their simp- fying assumptions, seem less realistic, although the e?ect of these assumptions on the outcome of the simulation experiments needs to be carefully assessed.


Book Synopsis Space Plasma Simulation by : Jörg Büchner

Download or read book Space Plasma Simulation written by Jörg Büchner and published by Springer. This book was released on 2008-01-11 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is twofold: to provide an introduction for newcomers to state of the art computer simulation techniques in space plasma physics and an overview of current developments. Computer simulation has reached a stage where it can be a highly useful tool for guiding theory and for making predictions of space plasma phenomena, ranging from microscopic to global scales. The various articles are arranged, as much as possible, according to the - derlying simulation technique, starting with the technique that makes the least number of assumptions: a fully kinetic approach which solves the coupled set of Maxwell’s equations for the electromagnetic ?eld and the equations of motion for a very large number of charged particles (electrons and ions) in this ?eld. Clearly, this is also the computationally most demanding model. Therefore, even with present day high performance computers, it is the most restrictive in terms of the space and time domain and the range of particle parameters that can be covered by the simulation experiments. It still makes sense, therefore, to also use models, which due to their simp- fying assumptions, seem less realistic, although the e?ect of these assumptions on the outcome of the simulation experiments needs to be carefully assessed.


Ideal Magnetohydrodynamics

Ideal Magnetohydrodynamics

Author: Jeffrey P. Freidberg

Publisher: Springer

Published: 2013-11-20

Total Pages: 489

ISBN-13: 9781475708387

DOWNLOAD EBOOK


Book Synopsis Ideal Magnetohydrodynamics by : Jeffrey P. Freidberg

Download or read book Ideal Magnetohydrodynamics written by Jeffrey P. Freidberg and published by Springer. This book was released on 2013-11-20 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Ideal Magnetohydrodynamics

Ideal Magnetohydrodynamics

Author: Jeffrey P. Freidberg

Publisher: Plenum Publishing Corporation

Published: 1987

Total Pages: 514

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Ideal Magnetohydrodynamics by : Jeffrey P. Freidberg

Download or read book Ideal Magnetohydrodynamics written by Jeffrey P. Freidberg and published by Plenum Publishing Corporation. This book was released on 1987 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: