Lectures in Transport Phenomena

Lectures in Transport Phenomena

Author: Robert Byron Bird

Publisher:

Published: 1969

Total Pages: 148

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Lectures in Transport Phenomena by : Robert Byron Bird

Download or read book Lectures in Transport Phenomena written by Robert Byron Bird and published by . This book was released on 1969 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt:


A Modern Course in Transport Phenomena

A Modern Course in Transport Phenomena

Author: David C. Venerus

Publisher: Cambridge University Press

Published: 2018-03-15

Total Pages: 537

ISBN-13: 1107129206

DOWNLOAD EBOOK

Integrating nonequilibrium thermodynamics and kinetic theory, this unique text presents a novel approach to the subject of transport phenomena.


Book Synopsis A Modern Course in Transport Phenomena by : David C. Venerus

Download or read book A Modern Course in Transport Phenomena written by David C. Venerus and published by Cambridge University Press. This book was released on 2018-03-15 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating nonequilibrium thermodynamics and kinetic theory, this unique text presents a novel approach to the subject of transport phenomena.


The Newman Lectures on Transport Phenomena

The Newman Lectures on Transport Phenomena

Author: John Newman

Publisher: CRC Press

Published: 2020-11-01

Total Pages: 314

ISBN-13: 1351609637

DOWNLOAD EBOOK

Prof. Newman is considered one of the great chemical engineers of his time. His reputation derives from his mastery of all phases of the subject matter, his clarity of thought, and his ability to reduce complex problems to their essential core elements. He is a member of the National Academy of Engineering, Washington, DC, USA, and has won numerous national awards including every award offered by the Electrochemical Society, USA. His motto, as known by his colleagues, is "do it right the first time." He has been teaching undergraduate and graduate core subject courses at the University of California, Berkeley (UC Berkeley), USA, since joining the faculty in 1966. His method is to write out, in long form, everything he expects to convey to his class on a subject on any given day. He has maintained and updated his lecture notes from notepad to computer throughout his career. This book is an exact reproduction of those notes. This book demonstrates how to solve the classic problems of fluid mechanics, starting with the Navier–Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis. It covers concepts such as microscopic interpretation of fluxes, multicomponent diffusion, entropy production, nonnewtonian fluids, natural convection, turbulent flow, and hydrodynamic stability. It amply arms any serious problem solver with the tools to address any problem.


Book Synopsis The Newman Lectures on Transport Phenomena by : John Newman

Download or read book The Newman Lectures on Transport Phenomena written by John Newman and published by CRC Press. This book was released on 2020-11-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prof. Newman is considered one of the great chemical engineers of his time. His reputation derives from his mastery of all phases of the subject matter, his clarity of thought, and his ability to reduce complex problems to their essential core elements. He is a member of the National Academy of Engineering, Washington, DC, USA, and has won numerous national awards including every award offered by the Electrochemical Society, USA. His motto, as known by his colleagues, is "do it right the first time." He has been teaching undergraduate and graduate core subject courses at the University of California, Berkeley (UC Berkeley), USA, since joining the faculty in 1966. His method is to write out, in long form, everything he expects to convey to his class on a subject on any given day. He has maintained and updated his lecture notes from notepad to computer throughout his career. This book is an exact reproduction of those notes. This book demonstrates how to solve the classic problems of fluid mechanics, starting with the Navier–Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis. It covers concepts such as microscopic interpretation of fluxes, multicomponent diffusion, entropy production, nonnewtonian fluids, natural convection, turbulent flow, and hydrodynamic stability. It amply arms any serious problem solver with the tools to address any problem.


Advanced Transport Phenomena

Advanced Transport Phenomena

Author: John C. Slattery

Publisher: Cambridge University Press

Published: 1999-07-13

Total Pages: 735

ISBN-13: 1316583902

DOWNLOAD EBOOK

The term 'transport phenomena' describes the fundamental processes of momentum, energy, and mass transfer. This text provides a thorough discussion of transport phenomena, laying the foundation for understanding a wide variety of operations used by chemical engineers. The book is arranged in three parallel parts covering the major topics of momentum, energy, and mass transfer. Each part begins with the theory, followed by illustrations of the way the theory can be used to obtain fairly complete solutions, and concludes with the four most common types of averaging used to obtain approximate solutions. A broad range of technologically important examples, as well as numerous exercises, are provided throughout the text. Based on the author's extensive teaching experience, a suggested lecture outline is also included. This book is intended for first-year graduate engineering students; it will be an equally useful reference for researchers in this field.


Book Synopsis Advanced Transport Phenomena by : John C. Slattery

Download or read book Advanced Transport Phenomena written by John C. Slattery and published by Cambridge University Press. This book was released on 1999-07-13 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term 'transport phenomena' describes the fundamental processes of momentum, energy, and mass transfer. This text provides a thorough discussion of transport phenomena, laying the foundation for understanding a wide variety of operations used by chemical engineers. The book is arranged in three parallel parts covering the major topics of momentum, energy, and mass transfer. Each part begins with the theory, followed by illustrations of the way the theory can be used to obtain fairly complete solutions, and concludes with the four most common types of averaging used to obtain approximate solutions. A broad range of technologically important examples, as well as numerous exercises, are provided throughout the text. Based on the author's extensive teaching experience, a suggested lecture outline is also included. This book is intended for first-year graduate engineering students; it will be an equally useful reference for researchers in this field.


The Newman Lectures on Transport Phenomena

The Newman Lectures on Transport Phenomena

Author: John S. Newman

Publisher:

Published: 2018-04-30

Total Pages: 250

ISBN-13: 9789814774277

DOWNLOAD EBOOK

Prof. Newman is considered one of the great chemical engineers of his time. His reputation derives from his mastery of all phases of the subject matter, his clarity of thought, and his ability to reduce complex problems to their essential core elements. He is a member of the National Academy of Engineering, Washington, DC, USA, and has won numerous national awards including every award offered by the Electrochemical Society, USA. His motto, as known by his colleagues, is "do it right the first time." He has been teaching undergraduate and graduate core subject courses at the University of California, Berkeley (UC Berkeley), USA, since joining the faculty in 1966. His method is to write out, in long form, everything he expects to convey to his class on a subject on any given day. He has maintained and updated his lecture notes from notepad to computer throughout his career. This book is an exact reproduction of those notes. This book demonstrates how to solve for the velocity profile of the classic problems of fluid mechanics, starting with Navier-Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis. It covers concepts such as basic relations of fluid mechanics, microscopic interpretation of fluxes, concentrations and velocities in mixtures, multicomponent diffusion, entropy production and implications for transport properties, Lighthill's transformations, perturbation methods and the singular perturbation method, non-Newtonian fluids, natural convection, turbulent flow, and hydrodynamic stability. It presents numerous examples such as Stokes flow past a sphere, heat transfer in a pure fluid, flow to a rotating disk, mass transfer to a rotating disk, boundary layer on a flat plate, creeping flow past a sphere, mass transfer to the rear of a sphere, Graetz-Leveque problem, spin coating, and mass transfer in turbulent flow and turbulent boundary layers. It is as much a thesis on transport phenomena as it is in applied mathematics, and it amply arms any serious problem solver with the tools to address any problem.


Book Synopsis The Newman Lectures on Transport Phenomena by : John S. Newman

Download or read book The Newman Lectures on Transport Phenomena written by John S. Newman and published by . This book was released on 2018-04-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prof. Newman is considered one of the great chemical engineers of his time. His reputation derives from his mastery of all phases of the subject matter, his clarity of thought, and his ability to reduce complex problems to their essential core elements. He is a member of the National Academy of Engineering, Washington, DC, USA, and has won numerous national awards including every award offered by the Electrochemical Society, USA. His motto, as known by his colleagues, is "do it right the first time." He has been teaching undergraduate and graduate core subject courses at the University of California, Berkeley (UC Berkeley), USA, since joining the faculty in 1966. His method is to write out, in long form, everything he expects to convey to his class on a subject on any given day. He has maintained and updated his lecture notes from notepad to computer throughout his career. This book is an exact reproduction of those notes. This book demonstrates how to solve for the velocity profile of the classic problems of fluid mechanics, starting with Navier-Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis. It covers concepts such as basic relations of fluid mechanics, microscopic interpretation of fluxes, concentrations and velocities in mixtures, multicomponent diffusion, entropy production and implications for transport properties, Lighthill's transformations, perturbation methods and the singular perturbation method, non-Newtonian fluids, natural convection, turbulent flow, and hydrodynamic stability. It presents numerous examples such as Stokes flow past a sphere, heat transfer in a pure fluid, flow to a rotating disk, mass transfer to a rotating disk, boundary layer on a flat plate, creeping flow past a sphere, mass transfer to the rear of a sphere, Graetz-Leveque problem, spin coating, and mass transfer in turbulent flow and turbulent boundary layers. It is as much a thesis on transport phenomena as it is in applied mathematics, and it amply arms any serious problem solver with the tools to address any problem.


Introductory Transport Phenomena

Introductory Transport Phenomena

Author: R. Byron Bird

Publisher: Wiley Global Education

Published: 2015-02-13

Total Pages: 786

ISBN-13: 1118953711

DOWNLOAD EBOOK

Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained. The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time. Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.


Book Synopsis Introductory Transport Phenomena by : R. Byron Bird

Download or read book Introductory Transport Phenomena written by R. Byron Bird and published by Wiley Global Education. This book was released on 2015-02-13 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained. The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time. Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.


Coulson and Richardson’s Chemical Engineering

Coulson and Richardson’s Chemical Engineering

Author: R. P. Chhabra

Publisher: Butterworth-Heinemann

Published: 2017-11-28

Total Pages: 572

ISBN-13: 0128097469

DOWNLOAD EBOOK

Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic. Coulson and Richardson’s Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications, Seventh Edition, covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers. Covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers Includes reference material converted from textbooks Explores topics, from foundational through technical Includes emerging applications, numerical methods, and computational tools


Book Synopsis Coulson and Richardson’s Chemical Engineering by : R. P. Chhabra

Download or read book Coulson and Richardson’s Chemical Engineering written by R. P. Chhabra and published by Butterworth-Heinemann. This book was released on 2017-11-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic. Coulson and Richardson’s Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications, Seventh Edition, covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers. Covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers Includes reference material converted from textbooks Explores topics, from foundational through technical Includes emerging applications, numerical methods, and computational tools


Advances in Transport Phenomena in Porous Media

Advances in Transport Phenomena in Porous Media

Author: Jacob Bear

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1018

ISBN-13: 9400936257

DOWNLOAD EBOOK

This volume contains the lectures presented at the NATO ADVANCED STUDY INSTITUTE that took place at Newark, Delaware, U. S. A. , July 14-23, 1985. The objective of this meeting was to present and discuss selected topics associated with transport phenomena in porous media. By their very nature, porous media and phenomena of transport of extensive quantities that take place in them, are very complex. The solid matrix may be rigid, or deformable (elastically, or following some other constitutive relation), the void space may be occupied by one or more fluid phases. Each fluid phase may be composed of more than one component, with the various components capable of interacting among themselves and/or with the solid matrix. The transport process may be isothermal or non-isothermal, with or without phase changes. Porous medium domains in which extensive quantities, such as mass of a fluid phase, component of a fluid phase, or heat of the porous medium as a whole, are being transported occur in the practice in a variety of disciplines.


Book Synopsis Advances in Transport Phenomena in Porous Media by : Jacob Bear

Download or read book Advances in Transport Phenomena in Porous Media written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the lectures presented at the NATO ADVANCED STUDY INSTITUTE that took place at Newark, Delaware, U. S. A. , July 14-23, 1985. The objective of this meeting was to present and discuss selected topics associated with transport phenomena in porous media. By their very nature, porous media and phenomena of transport of extensive quantities that take place in them, are very complex. The solid matrix may be rigid, or deformable (elastically, or following some other constitutive relation), the void space may be occupied by one or more fluid phases. Each fluid phase may be composed of more than one component, with the various components capable of interacting among themselves and/or with the solid matrix. The transport process may be isothermal or non-isothermal, with or without phase changes. Porous medium domains in which extensive quantities, such as mass of a fluid phase, component of a fluid phase, or heat of the porous medium as a whole, are being transported occur in the practice in a variety of disciplines.


Semiconductor Optics and Transport Phenomena

Semiconductor Optics and Transport Phenomena

Author: Wilfried Schäfer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 498

ISBN-13: 3662046636

DOWNLOAD EBOOK

Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.


Book Synopsis Semiconductor Optics and Transport Phenomena by : Wilfried Schäfer

Download or read book Semiconductor Optics and Transport Phenomena written by Wilfried Schäfer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.


Transport Phenomena Fundamentals

Transport Phenomena Fundamentals

Author: Joel L. Plawsky

Publisher: CRC Press

Published: 2020-02-27

Total Pages: 863

ISBN-13: 1351624873

DOWNLOAD EBOOK

The fourth edition of Transport Phenomena Fundamentals continues with its streamlined approach to the subject, based on a unified treatment of heat, mass, and momentum transport using a balance equation approach. The new edition includes more worked examples within each chapter and adds confidence-building problems at the end of each chapter. Some numerical solutions are included in an appendix for students to check their comprehension of key concepts. Additional resources online include exercises that can be practiced using a wide range of software programs available for simulating engineering problems, such as, COMSOL®, Maple®, Fluent, Aspen, Mathematica, Python and MATLAB®, lecture notes, and past exams. This edition incorporates a wider range of problems to expand the utility of the text beyond chemical engineering. The text is divided into two parts, which can be used for teaching a two-term course. Part I covers the balance equation in the context of diffusive transport—momentum, energy, mass, and charge. Each chapter adds a term to the balance equation, highlighting that term's effects on the physical behavior of the system and the underlying mathematical description. Chapters familiarize students with modeling and developing mathematical expressions based on the analysis of a control volume, the derivation of the governing differential equations, and the solution to those equations with appropriate boundary conditions. Part II builds on the diffusive transport balance equation by introducing convective transport terms, focusing on partial, rather than ordinary, differential equations. The text describes paring down the full, microscopic equations governing the phenomena to simplify the models and develop engineering solutions, and it introduces macroscopic versions of the balance equations for use where the microscopic approach is either too difficult to solve or would yield much more information that is actually required. The text discusses the momentum, Bernoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. Laminar flow situations are treated first followed by a discussion of turbulence. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures.


Book Synopsis Transport Phenomena Fundamentals by : Joel L. Plawsky

Download or read book Transport Phenomena Fundamentals written by Joel L. Plawsky and published by CRC Press. This book was released on 2020-02-27 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition of Transport Phenomena Fundamentals continues with its streamlined approach to the subject, based on a unified treatment of heat, mass, and momentum transport using a balance equation approach. The new edition includes more worked examples within each chapter and adds confidence-building problems at the end of each chapter. Some numerical solutions are included in an appendix for students to check their comprehension of key concepts. Additional resources online include exercises that can be practiced using a wide range of software programs available for simulating engineering problems, such as, COMSOL®, Maple®, Fluent, Aspen, Mathematica, Python and MATLAB®, lecture notes, and past exams. This edition incorporates a wider range of problems to expand the utility of the text beyond chemical engineering. The text is divided into two parts, which can be used for teaching a two-term course. Part I covers the balance equation in the context of diffusive transport—momentum, energy, mass, and charge. Each chapter adds a term to the balance equation, highlighting that term's effects on the physical behavior of the system and the underlying mathematical description. Chapters familiarize students with modeling and developing mathematical expressions based on the analysis of a control volume, the derivation of the governing differential equations, and the solution to those equations with appropriate boundary conditions. Part II builds on the diffusive transport balance equation by introducing convective transport terms, focusing on partial, rather than ordinary, differential equations. The text describes paring down the full, microscopic equations governing the phenomena to simplify the models and develop engineering solutions, and it introduces macroscopic versions of the balance equations for use where the microscopic approach is either too difficult to solve or would yield much more information that is actually required. The text discusses the momentum, Bernoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. Laminar flow situations are treated first followed by a discussion of turbulence. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures.