Advanced Electromagnetism: Foundations: Theory And Applications

Advanced Electromagnetism: Foundations: Theory And Applications

Author: Terence William Barrett

Publisher: World Scientific

Published: 1995-11-16

Total Pages: 807

ISBN-13: 9814501085

DOWNLOAD EBOOK

Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.


Book Synopsis Advanced Electromagnetism: Foundations: Theory And Applications by : Terence William Barrett

Download or read book Advanced Electromagnetism: Foundations: Theory And Applications written by Terence William Barrett and published by World Scientific. This book was released on 1995-11-16 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.


Lectures on Electromagnetism

Lectures on Electromagnetism

Author: Ashok Das

Publisher: World Scientific

Published: 2013

Total Pages: 468

ISBN-13: 9814508276

DOWNLOAD EBOOK

These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell''s equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of various equations, particularly in the second half of the book that focuses on rather advanced topics. This set of lecture notes, written in a simple and lucid style and in a manner that is complementary to other texts on electromagnetism, will be a valuable addition to the physics bookshelf.


Book Synopsis Lectures on Electromagnetism by : Ashok Das

Download or read book Lectures on Electromagnetism written by Ashok Das and published by World Scientific. This book was released on 2013 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell''s equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of various equations, particularly in the second half of the book that focuses on rather advanced topics. This set of lecture notes, written in a simple and lucid style and in a manner that is complementary to other texts on electromagnetism, will be a valuable addition to the physics bookshelf.


Lectures On Computation

Lectures On Computation

Author: Richard P. Feynman

Publisher: Addison-Wesley Longman

Published: 1996-09-08

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b


Book Synopsis Lectures On Computation by : Richard P. Feynman

Download or read book Lectures On Computation written by Richard P. Feynman and published by Addison-Wesley Longman. This book was released on 1996-09-08 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b


The Feynman Lectures on Physics, Vol. III

The Feynman Lectures on Physics, Vol. III

Author: Richard P. Feynman

Publisher:

Published: 2011-10-04

Total Pages: 402

ISBN-13: 0465025013

DOWNLOAD EBOOK

New edition features improved typography, figures and tables, expanded indexes, and 885 new corrections.


Book Synopsis The Feynman Lectures on Physics, Vol. III by : Richard P. Feynman

Download or read book The Feynman Lectures on Physics, Vol. III written by Richard P. Feynman and published by . This book was released on 2011-10-04 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition features improved typography, figures and tables, expanded indexes, and 885 new corrections.


Classical Electrodynamics

Classical Electrodynamics

Author: K. K. Likharev

Publisher:

Published: 2018-06-11

Total Pages: 0

ISBN-13: 9780750314053

DOWNLOAD EBOOK

Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.


Book Synopsis Classical Electrodynamics by : K. K. Likharev

Download or read book Classical Electrodynamics written by K. K. Likharev and published by . This book was released on 2018-06-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.


Lectures on Electrodynamics

Lectures on Electrodynamics

Author: J. Robert Oppenheimer

Publisher: M.E. Sharpe

Published: 1970

Total Pages: 186

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Lectures on Electrodynamics by : J. Robert Oppenheimer

Download or read book Lectures on Electrodynamics written by J. Robert Oppenheimer and published by M.E. Sharpe. This book was released on 1970 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Classical Electromagnetism in a Nutshell

Classical Electromagnetism in a Nutshell

Author: Anupam Garg

Publisher: Princeton University Press

Published: 2012-04-08

Total Pages: 709

ISBN-13: 0691130183

DOWNLOAD EBOOK

A comprehensive, modern introduction to electromagnetism This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons. Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems. Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problems


Book Synopsis Classical Electromagnetism in a Nutshell by : Anupam Garg

Download or read book Classical Electromagnetism in a Nutshell written by Anupam Garg and published by Princeton University Press. This book was released on 2012-04-08 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, modern introduction to electromagnetism This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons. Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems. Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problems


Electrodynamics

Electrodynamics

Author: Fulvio Melia

Publisher: University of Chicago Press

Published: 2001-09-15

Total Pages: 272

ISBN-13: 9780226519579

DOWNLOAD EBOOK

Practically all of modern physics deals with fields—functions of space (or spacetime) that give the value of a certain quantity, such as the temperature, in terms of its location within a prescribed volume. Electrodynamics is a comprehensive study of the field produced by (and interacting with) charged particles, which in practice means almost all matter. Fulvio Melia's Electrodynamics offers a concise, compact, yet complete treatment of this important branch of physics. Unlike most of the standard texts, Electrodynamics neither assumes familiarity with basic concepts nor ends before reaching advanced theoretical principles. Instead this book takes a continuous approach, leading the reader from fundamental physical principles through to a relativistic Lagrangian formalism that overlaps with the field theoretic techniques used in other branches of advanced physics. Avoiding unnecessary technical details and calculations, Electrodynamics will serve both as a useful supplemental text for graduate and advanced undergraduate students and as a helpful overview for physicists who specialize in other fields.


Book Synopsis Electrodynamics by : Fulvio Melia

Download or read book Electrodynamics written by Fulvio Melia and published by University of Chicago Press. This book was released on 2001-09-15 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practically all of modern physics deals with fields—functions of space (or spacetime) that give the value of a certain quantity, such as the temperature, in terms of its location within a prescribed volume. Electrodynamics is a comprehensive study of the field produced by (and interacting with) charged particles, which in practice means almost all matter. Fulvio Melia's Electrodynamics offers a concise, compact, yet complete treatment of this important branch of physics. Unlike most of the standard texts, Electrodynamics neither assumes familiarity with basic concepts nor ends before reaching advanced theoretical principles. Instead this book takes a continuous approach, leading the reader from fundamental physical principles through to a relativistic Lagrangian formalism that overlaps with the field theoretic techniques used in other branches of advanced physics. Avoiding unnecessary technical details and calculations, Electrodynamics will serve both as a useful supplemental text for graduate and advanced undergraduate students and as a helpful overview for physicists who specialize in other fields.


Lectures on Electromagnetic Theory

Lectures on Electromagnetic Theory

Author: Laszlo Solymar

Publisher: Oxford University Press, USA

Published: 1984

Total Pages: 272

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Lectures on Electromagnetic Theory by : Laszlo Solymar

Download or read book Lectures on Electromagnetic Theory written by Laszlo Solymar and published by Oxford University Press, USA. This book was released on 1984 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Introduction to the Finite Element Method in Electromagnetics

Introduction to the Finite Element Method in Electromagnetics

Author: Anastasis Polycarpou

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 115

ISBN-13: 3031016890

DOWNLOAD EBOOK

This series lecture is an introduction to the finite element method with applications in electromagnetics. The finite element method is a numerical method that is used to solve boundary-value problems characterized by a partial differential equation and a set of boundary conditions. The geometrical domain of a boundary-value problem is discretized using sub-domain elements, called the finite elements, and the differential equation is applied to a single element after it is brought to a “weak” integro-differential form. A set of shape functions is used to represent the primary unknown variable in the element domain. A set of linear equations is obtained for each element in the discretized domain. A global matrix system is formed after the assembly of all elements. This lecture is divided into two chapters. Chapter 1 describes one-dimensional boundary-value problems with applications to electrostatic problems described by the Poisson's equation. The accuracy of the finite element method is evaluated for linear and higher order elements by computing the numerical error based on two different definitions. Chapter 2 describes two-dimensional boundary-value problems in the areas of electrostatics and electrodynamics (time-harmonic problems). For the second category, an absorbing boundary condition was imposed at the exterior boundary to simulate undisturbed wave propagation toward infinity. Computations of the numerical error were performed in order to evaluate the accuracy and effectiveness of the method in solving electromagnetic problems. Both chapters are accompanied by a number of Matlab codes which can be used by the reader to solve one- and two-dimensional boundary-value problems. These codes can be downloaded from the publisher's URL: www.morganclaypool.com/page/polycarpou This lecture is written primarily for the nonexpert engineer or the undergraduate or graduate student who wants to learn, for the first time, the finite element method with applications to electromagnetics. It is also targeted for research engineers who have knowledge of other numerical techniques and want to familiarize themselves with the finite element method. The lecture begins with the basics of the method, including formulating a boundary-value problem using a weighted-residual method and the Galerkin approach, and continues with imposing all three types of boundary conditions including absorbing boundary conditions. Another important topic of emphasis is the development of shape functions including those of higher order. In simple words, this series lecture provides the reader with all information necessary for someone to apply successfully the finite element method to one- and two-dimensional boundary-value problems in electromagnetics. It is suitable for newcomers in the field of finite elements in electromagnetics.


Book Synopsis Introduction to the Finite Element Method in Electromagnetics by : Anastasis Polycarpou

Download or read book Introduction to the Finite Element Method in Electromagnetics written by Anastasis Polycarpou and published by Springer Nature. This book was released on 2022-05-31 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series lecture is an introduction to the finite element method with applications in electromagnetics. The finite element method is a numerical method that is used to solve boundary-value problems characterized by a partial differential equation and a set of boundary conditions. The geometrical domain of a boundary-value problem is discretized using sub-domain elements, called the finite elements, and the differential equation is applied to a single element after it is brought to a “weak” integro-differential form. A set of shape functions is used to represent the primary unknown variable in the element domain. A set of linear equations is obtained for each element in the discretized domain. A global matrix system is formed after the assembly of all elements. This lecture is divided into two chapters. Chapter 1 describes one-dimensional boundary-value problems with applications to electrostatic problems described by the Poisson's equation. The accuracy of the finite element method is evaluated for linear and higher order elements by computing the numerical error based on two different definitions. Chapter 2 describes two-dimensional boundary-value problems in the areas of electrostatics and electrodynamics (time-harmonic problems). For the second category, an absorbing boundary condition was imposed at the exterior boundary to simulate undisturbed wave propagation toward infinity. Computations of the numerical error were performed in order to evaluate the accuracy and effectiveness of the method in solving electromagnetic problems. Both chapters are accompanied by a number of Matlab codes which can be used by the reader to solve one- and two-dimensional boundary-value problems. These codes can be downloaded from the publisher's URL: www.morganclaypool.com/page/polycarpou This lecture is written primarily for the nonexpert engineer or the undergraduate or graduate student who wants to learn, for the first time, the finite element method with applications to electromagnetics. It is also targeted for research engineers who have knowledge of other numerical techniques and want to familiarize themselves with the finite element method. The lecture begins with the basics of the method, including formulating a boundary-value problem using a weighted-residual method and the Galerkin approach, and continues with imposing all three types of boundary conditions including absorbing boundary conditions. Another important topic of emphasis is the development of shape functions including those of higher order. In simple words, this series lecture provides the reader with all information necessary for someone to apply successfully the finite element method to one- and two-dimensional boundary-value problems in electromagnetics. It is suitable for newcomers in the field of finite elements in electromagnetics.