Lignin Conversion Catalysis

Lignin Conversion Catalysis

Author: Chaofeng Zhang

Publisher: John Wiley & Sons

Published: 2022-08-19

Total Pages: 468

ISBN-13: 3527835024

DOWNLOAD EBOOK

Lignin Conversion Catalysis Authoritative reference providing comprehensive knowledge on the lignin conversion process with recent developments of mechanisms and techniques Lignin Conversion Catalysis: Transformation to Aromatic Chemicals covers the strategy, catalysis, and mechanisms of cleaving lignin linkages to aromatic chemicals and crucially elaborates on the specifics of multiple original lignins. Sample topics covered in the work include: Lignin depolymerization, models, and techniques of various lignins by heterogeneous substrates (such as native lignins, Kraft lignins, and organosolv lignins) Cleavage methods for lignins (such as oxidation and hydrogenation) as well as their main products (such as arenes, phenol, and acid) Relationships among the strategy/method, catalyst, and mechanism when viewed from the cleavage order and the type of corresponding chemical bonds Commercial components of lignin, a globally available raw material with many applications in drug design, polymers, and more Organic chemists, polymer chemists, and chemical engineers can use the valuable information contained in Lignin Conversion Catalysis: Transformation to Aromatic Chemicals to get up to date on this new raw material and understand the various developments that have been made in the field to make it viable for industrial purposes.


Book Synopsis Lignin Conversion Catalysis by : Chaofeng Zhang

Download or read book Lignin Conversion Catalysis written by Chaofeng Zhang and published by John Wiley & Sons. This book was released on 2022-08-19 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lignin Conversion Catalysis Authoritative reference providing comprehensive knowledge on the lignin conversion process with recent developments of mechanisms and techniques Lignin Conversion Catalysis: Transformation to Aromatic Chemicals covers the strategy, catalysis, and mechanisms of cleaving lignin linkages to aromatic chemicals and crucially elaborates on the specifics of multiple original lignins. Sample topics covered in the work include: Lignin depolymerization, models, and techniques of various lignins by heterogeneous substrates (such as native lignins, Kraft lignins, and organosolv lignins) Cleavage methods for lignins (such as oxidation and hydrogenation) as well as their main products (such as arenes, phenol, and acid) Relationships among the strategy/method, catalyst, and mechanism when viewed from the cleavage order and the type of corresponding chemical bonds Commercial components of lignin, a globally available raw material with many applications in drug design, polymers, and more Organic chemists, polymer chemists, and chemical engineers can use the valuable information contained in Lignin Conversion Catalysis: Transformation to Aromatic Chemicals to get up to date on this new raw material and understand the various developments that have been made in the field to make it viable for industrial purposes.


Chemical Catalysts for Biomass Upgrading

Chemical Catalysts for Biomass Upgrading

Author: Mark Crocker

Publisher: John Wiley & Sons

Published: 2020-03-09

Total Pages: 634

ISBN-13: 3527344667

DOWNLOAD EBOOK

A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.


Book Synopsis Chemical Catalysts for Biomass Upgrading by : Mark Crocker

Download or read book Chemical Catalysts for Biomass Upgrading written by Mark Crocker and published by John Wiley & Sons. This book was released on 2020-03-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.


Nanotechnology in Catalysis

Nanotechnology in Catalysis

Author: Bert F. Sels

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Nanotechnology in Catalysis by : Bert F. Sels

Download or read book Nanotechnology in Catalysis written by Bert F. Sels and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Lignin Valorization

Lignin Valorization

Author: Gregg T. Beckham

Publisher: Royal Society of Chemistry

Published: 2018-03-29

Total Pages: 528

ISBN-13: 1782625542

DOWNLOAD EBOOK

A comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies.


Book Synopsis Lignin Valorization by : Gregg T. Beckham

Download or read book Lignin Valorization written by Gregg T. Beckham and published by Royal Society of Chemistry. This book was released on 2018-03-29 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, interdisciplinary picture of how lignocellulosic biorefineries could potentially employ lignin valorization technologies.


Lignin Utilization Strategies

Lignin Utilization Strategies

Author: Chang Geun Yoo

Publisher:

Published: 2021

Total Pages: 314

ISBN-13: 9780841298453

DOWNLOAD EBOOK

Emerging applications of lignin Lignin has great potential as a sustainable, renewable resource for aromatic molecules that can be used in downstream applications. However, its natural heterogeneity and complexity are substantial barriers to its efficient utilization. Industrial lignin, a byproduct from the pulping and biorefinery industries, is usually burned or directly discharged as waste. This work provides a comprehensive exploration of recent lignin utilization strategies with chapters written by experts from agricultural science and engineering, biotechnology, biology, catalysis, chemical engineering, chemistry, wood science, and other related fields.


Book Synopsis Lignin Utilization Strategies by : Chang Geun Yoo

Download or read book Lignin Utilization Strategies written by Chang Geun Yoo and published by . This book was released on 2021 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging applications of lignin Lignin has great potential as a sustainable, renewable resource for aromatic molecules that can be used in downstream applications. However, its natural heterogeneity and complexity are substantial barriers to its efficient utilization. Industrial lignin, a byproduct from the pulping and biorefinery industries, is usually burned or directly discharged as waste. This work provides a comprehensive exploration of recent lignin utilization strategies with chapters written by experts from agricultural science and engineering, biotechnology, biology, catalysis, chemical engineering, chemistry, wood science, and other related fields.


Biomass, Biofuels, Biochemicals

Biomass, Biofuels, Biochemicals

Author: Thallada Bhaskar

Publisher: Elsevier

Published: 2021-02-09

Total Pages: 360

ISBN-13: 0128202947

DOWNLOAD EBOOK

Biomass, Biofuels, Biochemicals: Lignin Biorefinery discusses the scientific and technical information relating to the structure and physico-chemical characteristics of lignin. The book covers the different processes (biological, thermal and catalytic routes) available for lignin conversion into specialty chemicals or fuels, activity relationships, and how optimized process parameters help establish the feasible size of the commercial plant in a centralized or decentralized model. In addition, the advantages and limitations of different technologies are discussed, considering local energy, chemicals, biopolymers, drug intermediates, activated carbons, and much more. Includes information on the most advanced and innovative processes for lignin conversion Covers information on biochemical and thermo-chemical processes for lignin valorization Provides information on lignin chemistry and its conversion into high value chemicals and fuels Presents a book designed as a text book, not merely a collection of research articles


Book Synopsis Biomass, Biofuels, Biochemicals by : Thallada Bhaskar

Download or read book Biomass, Biofuels, Biochemicals written by Thallada Bhaskar and published by Elsevier. This book was released on 2021-02-09 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass, Biofuels, Biochemicals: Lignin Biorefinery discusses the scientific and technical information relating to the structure and physico-chemical characteristics of lignin. The book covers the different processes (biological, thermal and catalytic routes) available for lignin conversion into specialty chemicals or fuels, activity relationships, and how optimized process parameters help establish the feasible size of the commercial plant in a centralized or decentralized model. In addition, the advantages and limitations of different technologies are discussed, considering local energy, chemicals, biopolymers, drug intermediates, activated carbons, and much more. Includes information on the most advanced and innovative processes for lignin conversion Covers information on biochemical and thermo-chemical processes for lignin valorization Provides information on lignin chemistry and its conversion into high value chemicals and fuels Presents a book designed as a text book, not merely a collection of research articles


Lignin Chemistry

Lignin Chemistry

Author: Yuhe Liao

Publisher: John Wiley & Sons

Published: 2024-05-31

Total Pages: 498

ISBN-13: 3527839852

DOWNLOAD EBOOK

Lignin Chemistry A thorough reference guide to Lignin Chemistry, from inherent structure revealing to transformation into chemicals, fuels, and materials Climate change, driven by rising greenhouse gas emissions, is the defining challenge of our time. Reducing our dependence on non-renewable resources such as fossil fuels will require alternative, more sustainable resources. Lignin, the only widely-occurring, renewable, aromatic bio-polymer in Nature, has a range of application potential in the production of chemicals, fuels, and other industrial materials. Lignin science has become one of the fastest-growing and most significant areas of sustainable chemistry in the world. Lignin Chemistry: Characterization, Isolation, and Valorization presents a systematic, multidisciplinary overview of this cutting-edge field and its current state of research. Beginning with a robust characterization of lignin, the book addresses the isolation and transformation of lignin, as well as the book inspires with a plethora of applications. The result is a critical resource for researchers and professionals in any area of academic or industry where renewable biomass, in particular lignin, has importance. Lignin Chemistry readers will find: Thermochemical and catalytic strategies for lignin conversion Detailed discussion of the valorization of lignin towards biopolymers, nanoparticles, carbon fibers and materials, and hydrogels An authorial team with immense and varied research experience Lignin Chemistry is ideal for chemical engineers, catalytic chemists, biochemists, material scientists, and analytical chemists in industry.


Book Synopsis Lignin Chemistry by : Yuhe Liao

Download or read book Lignin Chemistry written by Yuhe Liao and published by John Wiley & Sons. This book was released on 2024-05-31 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lignin Chemistry A thorough reference guide to Lignin Chemistry, from inherent structure revealing to transformation into chemicals, fuels, and materials Climate change, driven by rising greenhouse gas emissions, is the defining challenge of our time. Reducing our dependence on non-renewable resources such as fossil fuels will require alternative, more sustainable resources. Lignin, the only widely-occurring, renewable, aromatic bio-polymer in Nature, has a range of application potential in the production of chemicals, fuels, and other industrial materials. Lignin science has become one of the fastest-growing and most significant areas of sustainable chemistry in the world. Lignin Chemistry: Characterization, Isolation, and Valorization presents a systematic, multidisciplinary overview of this cutting-edge field and its current state of research. Beginning with a robust characterization of lignin, the book addresses the isolation and transformation of lignin, as well as the book inspires with a plethora of applications. The result is a critical resource for researchers and professionals in any area of academic or industry where renewable biomass, in particular lignin, has importance. Lignin Chemistry readers will find: Thermochemical and catalytic strategies for lignin conversion Detailed discussion of the valorization of lignin towards biopolymers, nanoparticles, carbon fibers and materials, and hydrogels An authorial team with immense and varied research experience Lignin Chemistry is ideal for chemical engineers, catalytic chemists, biochemists, material scientists, and analytical chemists in industry.


Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II

Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II

Author: Marcel Schlaf

Publisher: Springer

Published: 2015-10-30

Total Pages: 206

ISBN-13: 981287769X

DOWNLOAD EBOOK

Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.


Book Synopsis Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II by : Marcel Schlaf

Download or read book Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II written by Marcel Schlaf and published by Springer. This book was released on 2015-10-30 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.


Biorefineries: A Step Towards Renewable and Clean Energy

Biorefineries: A Step Towards Renewable and Clean Energy

Author: Pradeep Verma

Publisher: Springer Nature

Published: 2021-01-04

Total Pages: 623

ISBN-13: 9811595933

DOWNLOAD EBOOK

This book provides a comprehensive account of past, present and future of the biomass based biorefineries. It is an all-inclusive and insightful compilation of recent advancements in the technology and methods used for conversion of biomass to bioenergy and other useful biochemicals. The book also focuses on the limitations of existing technologies and provides the future prospects, as well as discusses socio-economic impact of biomass based biorefineries. This book assists researchers in the area of lignocellulosic biorefineries and can be used by the students, scientist and academician as an advanced reference textbook.


Book Synopsis Biorefineries: A Step Towards Renewable and Clean Energy by : Pradeep Verma

Download or read book Biorefineries: A Step Towards Renewable and Clean Energy written by Pradeep Verma and published by Springer Nature. This book was released on 2021-01-04 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of past, present and future of the biomass based biorefineries. It is an all-inclusive and insightful compilation of recent advancements in the technology and methods used for conversion of biomass to bioenergy and other useful biochemicals. The book also focuses on the limitations of existing technologies and provides the future prospects, as well as discusses socio-economic impact of biomass based biorefineries. This book assists researchers in the area of lignocellulosic biorefineries and can be used by the students, scientist and academician as an advanced reference textbook.


Reductive Conversion of Lignin to Aromatic Chemicals with Earth Abundant Catalysts

Reductive Conversion of Lignin to Aromatic Chemicals with Earth Abundant Catalysts

Author: Eric Michael Anderson (Ph. D.)

Publisher:

Published: 2019

Total Pages: 228

ISBN-13:

DOWNLOAD EBOOK

The viability of lignocellulosic biomass as a feedstock for chemicals hinges on the successful utilization of the lignin. Lignin, which comprises 15-30 wt% of biomass, is an amorphous polymer composed of multiple phenolic monomers. Lignin polymerization occurs through an uncontrolled radical coupling of monomers leading to an array of C-O and C-C bonds in the polymer. As such, lignin is highly recalcitrant and is responsible for the poor utilization of biomass. Many harsh thermochemical processes exist to extract lignin, but typically result in the destruction and condensation of the lignin rendering it as process waste. Alternative fractionation techniques focused on preserving lignin have recently been developed. These methods utilize reduction catalysts to depolymerize and stabilize reactive lignin fragments to produce stable phenols. This work focuses on the design of flow reactors to understand this process, evaluate catalysts and elucidate how structural changes in biomass impact lignin depolymerization and upgrading. Our lignin conversion process operates by adding a heterogeneous reduction catalyst with whole biomass, a solvent and a reducing agent. Two key steps were discovered in the reductive conversion of lignin. First, lignin oligomers are liberated from the biomass by solvolytic cleavage of lignin-carbohydrate bonds. Next, lignin oligomers are reductively fragmented at the catalyst surface to produce stable phenolic compounds. Lignin solvolysis and reduction were physically separated in a dual-bed flow-through reactor, which allows for independent control of each step. Direct control of lignin solvolysis and reduction allowed for limiting conditions to be isolated. Reduction limited conditions were used to study catalyst activity and stability. Solvolysis limiting conditions were used to probe how lignin structure influences product selectivity and yield. Additionally, molybdenum-based catalysts were developed for the conversion of lignin-derived phenols into aromatics. Gas phase reactions with n-propyl guaiacol demonstrated that molybdenum polyoxometalates are effective catalysts to perform simultaneous alkylationhydrodeoxygenation to produce alkylated aromatics from phenolics. Finally, the dual-bed reactor was used to combine reductive fractionation and deoxygenation chemistry to directly convert lignin into aromatics over a molybdenum carbide catalyst. Overall, a versatile reactor system was developed to facilitate fundamental studies to understand biomass structure and catalyst performance.


Book Synopsis Reductive Conversion of Lignin to Aromatic Chemicals with Earth Abundant Catalysts by : Eric Michael Anderson (Ph. D.)

Download or read book Reductive Conversion of Lignin to Aromatic Chemicals with Earth Abundant Catalysts written by Eric Michael Anderson (Ph. D.) and published by . This book was released on 2019 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The viability of lignocellulosic biomass as a feedstock for chemicals hinges on the successful utilization of the lignin. Lignin, which comprises 15-30 wt% of biomass, is an amorphous polymer composed of multiple phenolic monomers. Lignin polymerization occurs through an uncontrolled radical coupling of monomers leading to an array of C-O and C-C bonds in the polymer. As such, lignin is highly recalcitrant and is responsible for the poor utilization of biomass. Many harsh thermochemical processes exist to extract lignin, but typically result in the destruction and condensation of the lignin rendering it as process waste. Alternative fractionation techniques focused on preserving lignin have recently been developed. These methods utilize reduction catalysts to depolymerize and stabilize reactive lignin fragments to produce stable phenols. This work focuses on the design of flow reactors to understand this process, evaluate catalysts and elucidate how structural changes in biomass impact lignin depolymerization and upgrading. Our lignin conversion process operates by adding a heterogeneous reduction catalyst with whole biomass, a solvent and a reducing agent. Two key steps were discovered in the reductive conversion of lignin. First, lignin oligomers are liberated from the biomass by solvolytic cleavage of lignin-carbohydrate bonds. Next, lignin oligomers are reductively fragmented at the catalyst surface to produce stable phenolic compounds. Lignin solvolysis and reduction were physically separated in a dual-bed flow-through reactor, which allows for independent control of each step. Direct control of lignin solvolysis and reduction allowed for limiting conditions to be isolated. Reduction limited conditions were used to study catalyst activity and stability. Solvolysis limiting conditions were used to probe how lignin structure influences product selectivity and yield. Additionally, molybdenum-based catalysts were developed for the conversion of lignin-derived phenols into aromatics. Gas phase reactions with n-propyl guaiacol demonstrated that molybdenum polyoxometalates are effective catalysts to perform simultaneous alkylationhydrodeoxygenation to produce alkylated aromatics from phenolics. Finally, the dual-bed reactor was used to combine reductive fractionation and deoxygenation chemistry to directly convert lignin into aromatics over a molybdenum carbide catalyst. Overall, a versatile reactor system was developed to facilitate fundamental studies to understand biomass structure and catalyst performance.