Deep Learning for Physical Scientists

Deep Learning for Physical Scientists

Author: Edward O. Pyzer-Knapp

Publisher: John Wiley & Sons

Published: 2021-09-21

Total Pages: 213

ISBN-13: 1119408350

DOWNLOAD EBOOK

Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome. Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.


Book Synopsis Deep Learning for Physical Scientists by : Edward O. Pyzer-Knapp

Download or read book Deep Learning for Physical Scientists written by Edward O. Pyzer-Knapp and published by John Wiley & Sons. This book was released on 2021-09-21 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome. Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.


Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)

Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)

Author:

Publisher: World Scientific

Published: 2020-03-10

Total Pages: 1001

ISBN-13: 9811204586

DOWNLOAD EBOOK

This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.


Book Synopsis Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes) by :

Download or read book Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes) written by and published by World Scientific. This book was released on 2020-03-10 with total page 1001 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.


Machine Learning for the Physical Sciences

Machine Learning for the Physical Sciences

Author: Carlo Requião da Cunha

Publisher: CRC Press

Published: 2023-12-05

Total Pages: 289

ISBN-13: 1003821146

DOWNLOAD EBOOK

Machine learning is an exciting topic with a myriad of applications. However, most textbooks are targeted towards computer science students. This, however, creates a complication for scientists across the physical sciences that also want to understand the main concepts of machine learning and look ahead to applica- tions and advancements in their fields. This textbook bridges this gap, providing an introduction to the mathematical foundations for the main algorithms used in machine learning for those from the physical sciences, without a formal background in computer science. It demon- strates how machine learning can be used to solve problems in physics and engineering, targeting senior undergraduate and graduate students in physics and electrical engineering, alongside advanced researchers. Key Features: Includes detailed algorithms Supplemented by codes in Julia: a high-performing language and one that is easy to read for those in the natural sciences All algorithms are presented with a good mathematical background


Book Synopsis Machine Learning for the Physical Sciences by : Carlo Requião da Cunha

Download or read book Machine Learning for the Physical Sciences written by Carlo Requião da Cunha and published by CRC Press. This book was released on 2023-12-05 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is an exciting topic with a myriad of applications. However, most textbooks are targeted towards computer science students. This, however, creates a complication for scientists across the physical sciences that also want to understand the main concepts of machine learning and look ahead to applica- tions and advancements in their fields. This textbook bridges this gap, providing an introduction to the mathematical foundations for the main algorithms used in machine learning for those from the physical sciences, without a formal background in computer science. It demon- strates how machine learning can be used to solve problems in physics and engineering, targeting senior undergraduate and graduate students in physics and electrical engineering, alongside advanced researchers. Key Features: Includes detailed algorithms Supplemented by codes in Julia: a high-performing language and one that is easy to read for those in the natural sciences All algorithms are presented with a good mathematical background


Physics of Data Science and Machine Learning

Physics of Data Science and Machine Learning

Author: Ijaz A. Rauf

Publisher: CRC Press

Published: 2021-11-28

Total Pages: 176

ISBN-13: 1000450473

DOWNLOAD EBOOK

Physics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning, and artificial intelligence for physicists looking to integrate these techniques into their work. This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, while exploring neural networks and machine learning, building on fundamental concepts of statistical and quantum mechanics. This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence. Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid in the development of new and innovative machine learning and artificial intelligence tools. Key Features: Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt. Free from endless derivations; instead, equations are presented and it is explained strategically why it is imperative to use them and how they will help in the task at hand. Illustrations and simple explanations help readers visualize and absorb the difficult-to-understand concepts. Ijaz A. Rauf is an adjunct professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an associate researcher at Ryerson University, Toronto, Canada and president of the Eminent-Tech Corporation, Bradford, ON, Canada.


Book Synopsis Physics of Data Science and Machine Learning by : Ijaz A. Rauf

Download or read book Physics of Data Science and Machine Learning written by Ijaz A. Rauf and published by CRC Press. This book was released on 2021-11-28 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning, and artificial intelligence for physicists looking to integrate these techniques into their work. This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, while exploring neural networks and machine learning, building on fundamental concepts of statistical and quantum mechanics. This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence. Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid in the development of new and innovative machine learning and artificial intelligence tools. Key Features: Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt. Free from endless derivations; instead, equations are presented and it is explained strategically why it is imperative to use them and how they will help in the task at hand. Illustrations and simple explanations help readers visualize and absorb the difficult-to-understand concepts. Ijaz A. Rauf is an adjunct professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an associate researcher at Ryerson University, Toronto, Canada and president of the Eminent-Tech Corporation, Bradford, ON, Canada.


Deep Learning and Physics

Deep Learning and Physics

Author: Akinori Tanaka

Publisher: Springer Nature

Published: 2021-03-24

Total Pages: 207

ISBN-13: 9813361085

DOWNLOAD EBOOK

What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.


Book Synopsis Deep Learning and Physics by : Akinori Tanaka

Download or read book Deep Learning and Physics written by Akinori Tanaka and published by Springer Nature. This book was released on 2021-03-24 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


Handbook on Big Data and Machine Learning in the Physical Sciences

Handbook on Big Data and Machine Learning in the Physical Sciences

Author: Surya Kalidindi

Publisher:

Published: 2019

Total Pages:

ISBN-13: 9789811204548

DOWNLOAD EBOOK

"This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics. Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument - driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems"--


Book Synopsis Handbook on Big Data and Machine Learning in the Physical Sciences by : Surya Kalidindi

Download or read book Handbook on Big Data and Machine Learning in the Physical Sciences written by Surya Kalidindi and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics. Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument - driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems"--


Deep Learning in Science

Deep Learning in Science

Author: Pierre Baldi

Publisher: Cambridge University Press

Published: 2021-07

Total Pages: 387

ISBN-13: 1108845355

DOWNLOAD EBOOK

Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.


Book Synopsis Deep Learning in Science by : Pierre Baldi

Download or read book Deep Learning in Science written by Pierre Baldi and published by Cambridge University Press. This book was released on 2021-07 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.


Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics

Author: Kristof T. Schütt

Publisher: Springer Nature

Published: 2020-06-03

Total Pages: 473

ISBN-13: 3030402452

DOWNLOAD EBOOK

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.


Book Synopsis Machine Learning Meets Quantum Physics by : Kristof T. Schütt

Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.


AI for Physics

AI for Physics

Author: Volker Knecht

Publisher: CRC Press

Published: 2022-08-29

Total Pages: 147

ISBN-13: 1000643832

DOWNLOAD EBOOK

Written in accessible language without mathematical formulas, this short book provides an overview of the wide and varied applications of artificial intelligence (AI) across the spectrum of physical sciences. Focusing in particular on AI's ability to extract patterns from data, known as machine learning (ML), the book includes a chapter on important machine learning algorithms and their respective applications in physics. It then explores the use of ML across a number of important sub-fields in more detail, ranging from particle, molecular and condensed matter physics, to astrophysics, cosmology and the theory of everything. The book covers such applications as the search for new particles and the detection of gravitational waves from the merging of black holes, and concludes by discussing what the future may hold.


Book Synopsis AI for Physics by : Volker Knecht

Download or read book AI for Physics written by Volker Knecht and published by CRC Press. This book was released on 2022-08-29 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in accessible language without mathematical formulas, this short book provides an overview of the wide and varied applications of artificial intelligence (AI) across the spectrum of physical sciences. Focusing in particular on AI's ability to extract patterns from data, known as machine learning (ML), the book includes a chapter on important machine learning algorithms and their respective applications in physics. It then explores the use of ML across a number of important sub-fields in more detail, ranging from particle, molecular and condensed matter physics, to astrophysics, cosmology and the theory of everything. The book covers such applications as the search for new particles and the detection of gravitational waves from the merging of black holes, and concludes by discussing what the future may hold.