Materials Science of Thin Films

Materials Science of Thin Films

Author: Milton Ohring

Publisher: Academic Press

Published: 2002

Total Pages: 817

ISBN-13: 0125249756

DOWNLOAD EBOOK

This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field. Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.


Book Synopsis Materials Science of Thin Films by : Milton Ohring

Download or read book Materials Science of Thin Films written by Milton Ohring and published by Academic Press. This book was released on 2002 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field. Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.


The Materials Science of Thin Films

The Materials Science of Thin Films

Author: Milton Ohring

Publisher: Academic Press

Published: 1992

Total Pages: 744

ISBN-13: 9780125249904

DOWNLOAD EBOOK

Prepared as a textbook complete with problems after each chapter, specifically intended for classroom use in universities.


Book Synopsis The Materials Science of Thin Films by : Milton Ohring

Download or read book The Materials Science of Thin Films written by Milton Ohring and published by Academic Press. This book was released on 1992 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prepared as a textbook complete with problems after each chapter, specifically intended for classroom use in universities.


Materials Science of Thin Films

Materials Science of Thin Films

Author: Milton Ohring

Publisher: Academic Press

Published: 2013-07-15

Total Pages: 864

ISBN-13: 9780123756664

DOWNLOAD EBOOK

When Ohring's Materials Science of Thin Films was first published in 1992, there were already at least 200 existing books on various aspects of thin film science and technology, but Ohring was quickly recognized as the first true textbook on the subject specifically intended for senior/graduate level classroom use in universities, as well as industrial in-house or short courses offered by professional societies. It offers the most comprehensive coverage of materials science and technology related to thin films and coatings of any book in the field. Partly because of that and because of the author's engaging writing style, Materials Science of Thin Films has been, and continues to be, the leading textbook in the field. The 3rd edition has been capably revised by Dr. Daniel Gall, associate professor of materials science and engineering at RPI, and Dr. Shefford Baker, associate professor of materials science and engineering at Cornell University. Provides the most comprehensive coverage of materials science and technology related to thin films and coatings of any book in the field Content has been updated to include coverage of the latest and most important deposition techniques, including atomic layer deposition and high impulse magnetron sputtering Includes new or expanded coverage of recent developments in thin films technology, such as filtered cathodic arcs, nanorod growth by the vapor-liquid-solid process, carbon nanotubes, new quantitative kinetic nucleation models, atomic-level growth classifications, bi-textured layers, surface morphological evolution models, and competitive grain growth


Book Synopsis Materials Science of Thin Films by : Milton Ohring

Download or read book Materials Science of Thin Films written by Milton Ohring and published by Academic Press. This book was released on 2013-07-15 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: When Ohring's Materials Science of Thin Films was first published in 1992, there were already at least 200 existing books on various aspects of thin film science and technology, but Ohring was quickly recognized as the first true textbook on the subject specifically intended for senior/graduate level classroom use in universities, as well as industrial in-house or short courses offered by professional societies. It offers the most comprehensive coverage of materials science and technology related to thin films and coatings of any book in the field. Partly because of that and because of the author's engaging writing style, Materials Science of Thin Films has been, and continues to be, the leading textbook in the field. The 3rd edition has been capably revised by Dr. Daniel Gall, associate professor of materials science and engineering at RPI, and Dr. Shefford Baker, associate professor of materials science and engineering at Cornell University. Provides the most comprehensive coverage of materials science and technology related to thin films and coatings of any book in the field Content has been updated to include coverage of the latest and most important deposition techniques, including atomic layer deposition and high impulse magnetron sputtering Includes new or expanded coverage of recent developments in thin films technology, such as filtered cathodic arcs, nanorod growth by the vapor-liquid-solid process, carbon nanotubes, new quantitative kinetic nucleation models, atomic-level growth classifications, bi-textured layers, surface morphological evolution models, and competitive grain growth


Thin Films by Chemical Vapour Deposition

Thin Films by Chemical Vapour Deposition

Author: C.E. Morosanu

Publisher: Elsevier

Published: 2016-06-22

Total Pages: 720

ISBN-13: 1483291731

DOWNLOAD EBOOK

The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.


Book Synopsis Thin Films by Chemical Vapour Deposition by : C.E. Morosanu

Download or read book Thin Films by Chemical Vapour Deposition written by C.E. Morosanu and published by Elsevier. This book was released on 2016-06-22 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.


Metal Oxide-Based Thin Film Structures

Metal Oxide-Based Thin Film Structures

Author: Nini Pryds

Publisher: Elsevier

Published: 2017-09-07

Total Pages: 560

ISBN-13: 0081017529

DOWNLOAD EBOOK

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike


Book Synopsis Metal Oxide-Based Thin Film Structures by : Nini Pryds

Download or read book Metal Oxide-Based Thin Film Structures written by Nini Pryds and published by Elsevier. This book was released on 2017-09-07 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike


Materials Science in Microelectronics I

Materials Science in Microelectronics I

Author: Eugene Machlin

Publisher: Elsevier

Published: 2010-07-07

Total Pages: 270

ISBN-13: 9780080459608

DOWNLOAD EBOOK

Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship. The first volume of Materials Science in Microelectronics focuses on the first relationship – that between processing and the structure of the thin-film. The state of the thin film’s surface during the period that one monolayer exists - before being buried in the next layer – determines the ultimate structure of the thin film, and thus its properties. This volume takes into consideration the following potential influencing factors: crystal defects, void structure, grain structure, interface structure in epitaxial films, the structure of amorphous films, and reaction-induced structure. An ideal text or reference work for students and researchers in material science, who need to learn the basics of thin films.


Book Synopsis Materials Science in Microelectronics I by : Eugene Machlin

Download or read book Materials Science in Microelectronics I written by Eugene Machlin and published by Elsevier. This book was released on 2010-07-07 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship. The first volume of Materials Science in Microelectronics focuses on the first relationship – that between processing and the structure of the thin-film. The state of the thin film’s surface during the period that one monolayer exists - before being buried in the next layer – determines the ultimate structure of the thin film, and thus its properties. This volume takes into consideration the following potential influencing factors: crystal defects, void structure, grain structure, interface structure in epitaxial films, the structure of amorphous films, and reaction-induced structure. An ideal text or reference work for students and researchers in material science, who need to learn the basics of thin films.


Principles of Vapor Deposition of Thin Films

Principles of Vapor Deposition of Thin Films

Author: Professor K.S. K.S Sree Harsha

Publisher: Elsevier

Published: 2005-12-16

Total Pages: 1176

ISBN-13: 9780080480312

DOWNLOAD EBOOK

The goal of producing devices that are smaller, faster, more functional, reproducible, reliable and economical has given thin film processing a unique role in technology. Principles of Vapor Deposition of Thin Films brings in to one place a diverse amount of scientific background that is considered essential to become knowledgeable in thin film depostition techniques. Its ultimate goal as a reference is to provide the foundation upon which thin film science and technological innovation are possible. * Offers detailed derivation of important formulae. * Thoroughly covers the basic principles of materials science that are important to any thin film preparation. * Careful attention to terminologies, concepts and definitions, as well as abundance of illustrations offer clear support for the text.


Book Synopsis Principles of Vapor Deposition of Thin Films by : Professor K.S. K.S Sree Harsha

Download or read book Principles of Vapor Deposition of Thin Films written by Professor K.S. K.S Sree Harsha and published by Elsevier. This book was released on 2005-12-16 with total page 1176 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of producing devices that are smaller, faster, more functional, reproducible, reliable and economical has given thin film processing a unique role in technology. Principles of Vapor Deposition of Thin Films brings in to one place a diverse amount of scientific background that is considered essential to become knowledgeable in thin film depostition techniques. Its ultimate goal as a reference is to provide the foundation upon which thin film science and technological innovation are possible. * Offers detailed derivation of important formulae. * Thoroughly covers the basic principles of materials science that are important to any thin film preparation. * Careful attention to terminologies, concepts and definitions, as well as abundance of illustrations offer clear support for the text.


Advances in Thin Films, Nanostructured Materials, and Coatings

Advances in Thin Films, Nanostructured Materials, and Coatings

Author: Alexander D. Pogrebnjak

Publisher: Springer

Published: 2019-02-08

Total Pages: 380

ISBN-13: 9811361339

DOWNLOAD EBOOK

This book highlights the latest advances in chemical and physical methods for thin-film deposition and surface engineering, including ion- and plasma-assisted processes, focusing on explaining the synthesis/processing–structure–properties relationship for a variety of thin-film systems. It covers topics such as advances in thin-film synthesis; new thin-film materials: diamond-like films, granular alloys, high-entropy alloys, oxynitrides, and intermetallic compounds; ultra-hard, wear- and oxidation-resistant and multifunctional coatings; superconducting, magnetic, semiconducting, and dielectric films; electrochemical and electroless depositions; thin-film characterization and instrumentation; and industrial applications.


Book Synopsis Advances in Thin Films, Nanostructured Materials, and Coatings by : Alexander D. Pogrebnjak

Download or read book Advances in Thin Films, Nanostructured Materials, and Coatings written by Alexander D. Pogrebnjak and published by Springer. This book was released on 2019-02-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the latest advances in chemical and physical methods for thin-film deposition and surface engineering, including ion- and plasma-assisted processes, focusing on explaining the synthesis/processing–structure–properties relationship for a variety of thin-film systems. It covers topics such as advances in thin-film synthesis; new thin-film materials: diamond-like films, granular alloys, high-entropy alloys, oxynitrides, and intermetallic compounds; ultra-hard, wear- and oxidation-resistant and multifunctional coatings; superconducting, magnetic, semiconducting, and dielectric films; electrochemical and electroless depositions; thin-film characterization and instrumentation; and industrial applications.


Thin Film Coatings

Thin Film Coatings

Author: Fredrick Madaraka Mwema

Publisher: CRC Press

Published: 2022-06-20

Total Pages: 308

ISBN-13: 1000597318

DOWNLOAD EBOOK

Thin Film Coatings: Properties, Deposition, and Applications discusses the holistic subject of conventional and emerging thin film technologies without bias to a specific technology based on the existing literature. It covers properties and delves into the various methods of thin film deposition, including the most recent techniques and a direction for future developments. It also discusses the cutting-edge applications of thin film coatings such as self-healing and smart coatings, biomedical, hybrid, and scalable thin films. Finally, the concept of Industry 4.0 in thin film coating technology is examined. This book: Explores a wide range and is not specific to material and method of deposition Demonstrates the application of thin film coatings in nearly all sectors, such as energy and anti-microbial applications Details the preparation and properties of hybrid and scalable (ultra) thin materials for advanced applications Provides detailed bibliometric analyses on applications of thin film coatings Discusses Industry 4.0 and 3D printing in thin film technology With its broad coverage, this comprehensive reference will appeal to a wide audience of materials scientists and engineers and others studying and developing advanced thin film technologies.


Book Synopsis Thin Film Coatings by : Fredrick Madaraka Mwema

Download or read book Thin Film Coatings written by Fredrick Madaraka Mwema and published by CRC Press. This book was released on 2022-06-20 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin Film Coatings: Properties, Deposition, and Applications discusses the holistic subject of conventional and emerging thin film technologies without bias to a specific technology based on the existing literature. It covers properties and delves into the various methods of thin film deposition, including the most recent techniques and a direction for future developments. It also discusses the cutting-edge applications of thin film coatings such as self-healing and smart coatings, biomedical, hybrid, and scalable thin films. Finally, the concept of Industry 4.0 in thin film coating technology is examined. This book: Explores a wide range and is not specific to material and method of deposition Demonstrates the application of thin film coatings in nearly all sectors, such as energy and anti-microbial applications Details the preparation and properties of hybrid and scalable (ultra) thin materials for advanced applications Provides detailed bibliometric analyses on applications of thin film coatings Discusses Industry 4.0 and 3D printing in thin film technology With its broad coverage, this comprehensive reference will appeal to a wide audience of materials scientists and engineers and others studying and developing advanced thin film technologies.


An Introduction to Thin Films

An Introduction to Thin Films

Author: Leon I. Maissel

Publisher: CRC Press

Published: 1973

Total Pages: 314

ISBN-13: 9780677028408

DOWNLOAD EBOOK


Book Synopsis An Introduction to Thin Films by : Leon I. Maissel

Download or read book An Introduction to Thin Films written by Leon I. Maissel and published by CRC Press. This book was released on 1973 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: