Mathematical Methods in Modern Complexity Science

Mathematical Methods in Modern Complexity Science

Author: Dimitri Volchenkov

Publisher: Springer Nature

Published: 2022-03-14

Total Pages: 202

ISBN-13: 3030794121

DOWNLOAD EBOOK

This book presents recent developments in nonlinear and complex systems. It provides recent theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers information theory, relativistic chaotic dynamics, data analysis, relativistic chaotic dynamics, solvability issues in integro-differential equations, and inverse problems for parabolic differential equations, synchronization and chaotic transient. Presents new concepts for understanding and modeling complex systems


Book Synopsis Mathematical Methods in Modern Complexity Science by : Dimitri Volchenkov

Download or read book Mathematical Methods in Modern Complexity Science written by Dimitri Volchenkov and published by Springer Nature. This book was released on 2022-03-14 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent developments in nonlinear and complex systems. It provides recent theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers information theory, relativistic chaotic dynamics, data analysis, relativistic chaotic dynamics, solvability issues in integro-differential equations, and inverse problems for parabolic differential equations, synchronization and chaotic transient. Presents new concepts for understanding and modeling complex systems


Modern Mathematical Methods For Scientists And Engineers: A Street-smart Introduction

Modern Mathematical Methods For Scientists And Engineers: A Street-smart Introduction

Author: Athanassios Fokas

Publisher: World Scientific

Published: 2022-12-12

Total Pages: 568

ISBN-13: 180061182X

DOWNLOAD EBOOK

Modern Mathematical Methods for Scientists and Engineers is a modern introduction to basic topics in mathematics at the undergraduate level, with emphasis on explanations and applications to real-life problems. There is also an 'Application' section at the end of each chapter, with topics drawn from a variety of areas, including neural networks, fluid dynamics, and the behavior of 'put' and 'call' options in financial markets. The book presents several modern important and computationally efficient topics, including feedforward neural networks, wavelets, generalized functions, stochastic optimization methods, and numerical methods.A unique and novel feature of the book is the introduction of a recently developed method for solving partial differential equations (PDEs), called the unified transform. PDEs are the mathematical cornerstone for describing an astonishingly wide range of phenomena, from quantum mechanics to ocean waves, to the diffusion of heat in matter and the behavior of financial markets. Despite the efforts of many famous mathematicians, physicists and engineers, the solution of partial differential equations remains a challenge.The unified transform greatly facilitates this task. For example, two and a half centuries after Jean d'Alembert formulated the wave equation and presented a solution for solving a simple problem for this equation, the unified transform derives in a simple manner a generalization of the d'Alembert solution, valid for general boundary value problems. Moreover, two centuries after Joseph Fourier introduced the classical tool of the Fourier series for solving the heat equation, the unified transform constructs a new solution to this ubiquitous PDE, with important analytical and numerical advantages in comparison to the classical solutions. The authors present the unified transform pedagogically, building all the necessary background, including functions of real and of complex variables and the Fourier transform, illustrating the method with numerous examples.Broad in scope, but pedagogical in style and content, the book is an introduction to powerful mathematical concepts and modern tools for students in science and engineering.


Book Synopsis Modern Mathematical Methods For Scientists And Engineers: A Street-smart Introduction by : Athanassios Fokas

Download or read book Modern Mathematical Methods For Scientists And Engineers: A Street-smart Introduction written by Athanassios Fokas and published by World Scientific. This book was released on 2022-12-12 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Mathematical Methods for Scientists and Engineers is a modern introduction to basic topics in mathematics at the undergraduate level, with emphasis on explanations and applications to real-life problems. There is also an 'Application' section at the end of each chapter, with topics drawn from a variety of areas, including neural networks, fluid dynamics, and the behavior of 'put' and 'call' options in financial markets. The book presents several modern important and computationally efficient topics, including feedforward neural networks, wavelets, generalized functions, stochastic optimization methods, and numerical methods.A unique and novel feature of the book is the introduction of a recently developed method for solving partial differential equations (PDEs), called the unified transform. PDEs are the mathematical cornerstone for describing an astonishingly wide range of phenomena, from quantum mechanics to ocean waves, to the diffusion of heat in matter and the behavior of financial markets. Despite the efforts of many famous mathematicians, physicists and engineers, the solution of partial differential equations remains a challenge.The unified transform greatly facilitates this task. For example, two and a half centuries after Jean d'Alembert formulated the wave equation and presented a solution for solving a simple problem for this equation, the unified transform derives in a simple manner a generalization of the d'Alembert solution, valid for general boundary value problems. Moreover, two centuries after Joseph Fourier introduced the classical tool of the Fourier series for solving the heat equation, the unified transform constructs a new solution to this ubiquitous PDE, with important analytical and numerical advantages in comparison to the classical solutions. The authors present the unified transform pedagogically, building all the necessary background, including functions of real and of complex variables and the Fourier transform, illustrating the method with numerous examples.Broad in scope, but pedagogical in style and content, the book is an introduction to powerful mathematical concepts and modern tools for students in science and engineering.


Modern Mathematical Tools and Techniques in Capturing Complexity

Modern Mathematical Tools and Techniques in Capturing Complexity

Author: Leandro Pardo

Publisher: Springer Science & Business Media

Published: 2011-05-26

Total Pages: 498

ISBN-13: 3642208525

DOWNLOAD EBOOK

Real-life problems are often quite complicated in form and nature and, for centuries, many different mathematical concepts, ideas and tools have been developed to formulate these problems theoretically and then to solve them either exactly or approximately. This book aims to gather a collection of papers dealing with several different problems arising from many disciplines and some modern mathematical approaches to handle them. In this respect, the book offers a wide overview on many of the current trends in Mathematics as valuable formal techniques in capturing and exploiting the complexity involved in real-world situations. Several researchers, colleagues, friends and students of Professor María Luisa Menéndez have contributed to this volume to pay tribute to her and to recognize the diverse contributions she had made to the fields of Mathematics and Statistics and to the profession in general. She had a sweet and strong personality, and instilled great values and work ethics in her students through her dedication to teaching and research. Even though the academic community lost her prematurely, she would continue to provide inspiration to many students and researchers worldwide through her published work.


Book Synopsis Modern Mathematical Tools and Techniques in Capturing Complexity by : Leandro Pardo

Download or read book Modern Mathematical Tools and Techniques in Capturing Complexity written by Leandro Pardo and published by Springer Science & Business Media. This book was released on 2011-05-26 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-life problems are often quite complicated in form and nature and, for centuries, many different mathematical concepts, ideas and tools have been developed to formulate these problems theoretically and then to solve them either exactly or approximately. This book aims to gather a collection of papers dealing with several different problems arising from many disciplines and some modern mathematical approaches to handle them. In this respect, the book offers a wide overview on many of the current trends in Mathematics as valuable formal techniques in capturing and exploiting the complexity involved in real-world situations. Several researchers, colleagues, friends and students of Professor María Luisa Menéndez have contributed to this volume to pay tribute to her and to recognize the diverse contributions she had made to the fields of Mathematics and Statistics and to the profession in general. She had a sweet and strong personality, and instilled great values and work ethics in her students through her dedication to teaching and research. Even though the academic community lost her prematurely, she would continue to provide inspiration to many students and researchers worldwide through her published work.


Mathematics in Science and Technology

Mathematics in Science and Technology

Author: A H Siddiqi

Publisher: World Scientific

Published: 2011-06-30

Total Pages: 556

ISBN-13: 9814462144

DOWNLOAD EBOOK

This unique volume presents reviews of research in several important areas of applications of mathematical concepts to science and technology, for example applications of inverse problems and wavelets to real world systems. The book provides a comprehensive overview of current research of several outstanding scholars engaged in diverse fields such as complexity theory, vertex coupling in quantum graphs, mixing of substances by turbulence, network dynamics and architecture, processes with rate — independent hysteresis, numerical analysis of Hamilton Jacobi — Bellman equations, simulations of complex stochastic differential equations, optimal flow control, shape optimal flow control, shape optimization and aircraft designing, mathematics of brain, nanotechnology and DNA structure and mathematical models of environmental problems. The volume also contains contributory talks based on current researches of comparatively young researchers participating in the conference. Contents:Part A Invited Talk:In Appreciation of Dr Zakir Husain Award (M Zuhair Nashed)Kinematical Conservation Laws (KCL): Equations of Evolution of Curves and Surfaces (K R Arun and P Prasad)Systematic Discretization of Input/Output Maps and Control of Partial Differential Equations (J Heiland, V Mehrmann and M Schmidt)Vertex Couplings in Quantum Graphs: Approximations by Scaled Schrödinger Operators (P Exner)Complexity Leads to Randomness in Chaotic Systems (R Lozi)Mathematical Modeling for Unifying Different Branches of Science, Engineering and Technology (N Rudraiah)On Equivalence Transformations and Exact Solutions of a Helmholtz Type Equation (O P Bhutani and L R Chowdhury)Cognitive Radio: State-of-the-Art and Mathematical Challenges (T Nadkar, V Thumar, A Patel, Md Z Ali Khan, U B Desai and S N Merchant)Part B Thematic Reviews:Inverse Problems of Parameter Identification in Partial Differential Equations (B Jadamba, A A Khan and M Sama)Finite Element Methods for HJB Equations (M Boulbrachene)Dynamics and Control of Underactuated Space Systems (K D Kumar and Godard)Some New Classes of Inverse Coefficient Problems in Engineering Mechanics and Computational Material Science Based on Boundary Measured Data (A Hasanov)Some Recent Developments on Mathematical Aspect of Wavelets (P Manchanda and Meenakshi)Relevance of Wavelets and Inverse Problems to Brain (A H Siddiqi, H K Sevindir, Z Aslan and C Yazici)Wavelets and Inverse Problems (K Goyal and M Mehra)Optimization Models for a Class of Structured Stochastic Games (S K Neogy, S Sinha, A K Das and A Gupta)Part C Contributory Talks:Predator-Prey Relations for Mammals where Prey Suppress Breeding (Q J Khan and M Al-Lawatia)SEI Model with Varying Transmission and Mortality Rates (G Rost)Trajectories and Stability Regions of the Lagrangian Points in the Generalized Chermnykh-Like Problem (B S Kushvah)MHD Flow Past an Infinite Plate Under the Effect of Gravity Modulation (S Wasu and S C Rajvanshi) Readership: Researchers in mathematical modeling, numerical analysis and computational mathematics. Keywords:Complexity Theory;Vertex Coupling in Quantum Graphs;Hamilton-Jacobi–Bellman Equation;Prey and Predator Model;Inverse Problems and Wavelets;Dynamics and Control of Under Actuated Space Systems


Book Synopsis Mathematics in Science and Technology by : A H Siddiqi

Download or read book Mathematics in Science and Technology written by A H Siddiqi and published by World Scientific. This book was released on 2011-06-30 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents reviews of research in several important areas of applications of mathematical concepts to science and technology, for example applications of inverse problems and wavelets to real world systems. The book provides a comprehensive overview of current research of several outstanding scholars engaged in diverse fields such as complexity theory, vertex coupling in quantum graphs, mixing of substances by turbulence, network dynamics and architecture, processes with rate — independent hysteresis, numerical analysis of Hamilton Jacobi — Bellman equations, simulations of complex stochastic differential equations, optimal flow control, shape optimal flow control, shape optimization and aircraft designing, mathematics of brain, nanotechnology and DNA structure and mathematical models of environmental problems. The volume also contains contributory talks based on current researches of comparatively young researchers participating in the conference. Contents:Part A Invited Talk:In Appreciation of Dr Zakir Husain Award (M Zuhair Nashed)Kinematical Conservation Laws (KCL): Equations of Evolution of Curves and Surfaces (K R Arun and P Prasad)Systematic Discretization of Input/Output Maps and Control of Partial Differential Equations (J Heiland, V Mehrmann and M Schmidt)Vertex Couplings in Quantum Graphs: Approximations by Scaled Schrödinger Operators (P Exner)Complexity Leads to Randomness in Chaotic Systems (R Lozi)Mathematical Modeling for Unifying Different Branches of Science, Engineering and Technology (N Rudraiah)On Equivalence Transformations and Exact Solutions of a Helmholtz Type Equation (O P Bhutani and L R Chowdhury)Cognitive Radio: State-of-the-Art and Mathematical Challenges (T Nadkar, V Thumar, A Patel, Md Z Ali Khan, U B Desai and S N Merchant)Part B Thematic Reviews:Inverse Problems of Parameter Identification in Partial Differential Equations (B Jadamba, A A Khan and M Sama)Finite Element Methods for HJB Equations (M Boulbrachene)Dynamics and Control of Underactuated Space Systems (K D Kumar and Godard)Some New Classes of Inverse Coefficient Problems in Engineering Mechanics and Computational Material Science Based on Boundary Measured Data (A Hasanov)Some Recent Developments on Mathematical Aspect of Wavelets (P Manchanda and Meenakshi)Relevance of Wavelets and Inverse Problems to Brain (A H Siddiqi, H K Sevindir, Z Aslan and C Yazici)Wavelets and Inverse Problems (K Goyal and M Mehra)Optimization Models for a Class of Structured Stochastic Games (S K Neogy, S Sinha, A K Das and A Gupta)Part C Contributory Talks:Predator-Prey Relations for Mammals where Prey Suppress Breeding (Q J Khan and M Al-Lawatia)SEI Model with Varying Transmission and Mortality Rates (G Rost)Trajectories and Stability Regions of the Lagrangian Points in the Generalized Chermnykh-Like Problem (B S Kushvah)MHD Flow Past an Infinite Plate Under the Effect of Gravity Modulation (S Wasu and S C Rajvanshi) Readership: Researchers in mathematical modeling, numerical analysis and computational mathematics. Keywords:Complexity Theory;Vertex Coupling in Quantum Graphs;Hamilton-Jacobi–Bellman Equation;Prey and Predator Model;Inverse Problems and Wavelets;Dynamics and Control of Under Actuated Space Systems


Algorithms and Complexity in Mathematics, Epistemology, and Science

Algorithms and Complexity in Mathematics, Epistemology, and Science

Author: Nicolas Fillion

Publisher: Springer

Published: 2019-02-07

Total Pages: 294

ISBN-13: 1493990519

DOWNLOAD EBOOK

ACMES (Algorithms and Complexity in Mathematics, Epistemology, and Science) is a multidisciplinary conference series that focuses on epistemological and mathematical issues relating to computation in modern science. This volume includes a selection of papers presented at the 2015 and 2016 conferences held at Western University that provide an interdisciplinary outlook on modern applied mathematics that draws from theory and practice, and situates it in proper context. These papers come from leading mathematicians, computational scientists, and philosophers of science, and cover a broad collection of mathematical and philosophical topics, including numerical analysis and its underlying philosophy, computer algebra, reliability and uncertainty quantification, computation and complexity theory, combinatorics, error analysis, perturbation theory, experimental mathematics, scientific epistemology, and foundations of mathematics. By bringing together contributions from researchers who approach the mathematical sciences from different perspectives, the volume will further readers' understanding of the multifaceted role of mathematics in modern science, informed by the state of the art in mathematics, scientific computing, and current modeling techniques.


Book Synopsis Algorithms and Complexity in Mathematics, Epistemology, and Science by : Nicolas Fillion

Download or read book Algorithms and Complexity in Mathematics, Epistemology, and Science written by Nicolas Fillion and published by Springer. This book was released on 2019-02-07 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: ACMES (Algorithms and Complexity in Mathematics, Epistemology, and Science) is a multidisciplinary conference series that focuses on epistemological and mathematical issues relating to computation in modern science. This volume includes a selection of papers presented at the 2015 and 2016 conferences held at Western University that provide an interdisciplinary outlook on modern applied mathematics that draws from theory and practice, and situates it in proper context. These papers come from leading mathematicians, computational scientists, and philosophers of science, and cover a broad collection of mathematical and philosophical topics, including numerical analysis and its underlying philosophy, computer algebra, reliability and uncertainty quantification, computation and complexity theory, combinatorics, error analysis, perturbation theory, experimental mathematics, scientific epistemology, and foundations of mathematics. By bringing together contributions from researchers who approach the mathematical sciences from different perspectives, the volume will further readers' understanding of the multifaceted role of mathematics in modern science, informed by the state of the art in mathematics, scientific computing, and current modeling techniques.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Book Synopsis Computational Complexity by : Sanjeev Arora

Download or read book Computational Complexity written by Sanjeev Arora and published by Cambridge University Press. This book was released on 2009-04-20 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Mathematical Methods in the Physical Sciences

Mathematical Methods in the Physical Sciences

Author: Mary L. Boas

Publisher: John Wiley & Sons

Published: 2006

Total Pages: 868

ISBN-13: 9788126508105

DOWNLOAD EBOOK

Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering.


Book Synopsis Mathematical Methods in the Physical Sciences by : Mary L. Boas

Download or read book Mathematical Methods in the Physical Sciences written by Mary L. Boas and published by John Wiley & Sons. This book was released on 2006 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt: Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering.


Algebraic and Discrete Mathematical Methods for Modern Biology

Algebraic and Discrete Mathematical Methods for Modern Biology

Author: Raina Robeva

Publisher: Academic Press

Published: 2015-05-09

Total Pages: 383

ISBN-13: 0128012714

DOWNLOAD EBOOK

Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. Examines significant questions in modern biology and their mathematical treatments Presents important mathematical concepts and tools in the context of essential biology Features material of interest to students in both mathematics and biology Presents chapters in modular format so coverage need not follow the Table of Contents Introduces projects appropriate for undergraduate research Utilizes freely accessible software for visualization, simulation, and analysis in modern biology Requires no calculus as a prerequisite Provides a complete Solutions Manual Features a companion website with supplementary resources


Book Synopsis Algebraic and Discrete Mathematical Methods for Modern Biology by : Raina Robeva

Download or read book Algebraic and Discrete Mathematical Methods for Modern Biology written by Raina Robeva and published by Academic Press. This book was released on 2015-05-09 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. Examines significant questions in modern biology and their mathematical treatments Presents important mathematical concepts and tools in the context of essential biology Features material of interest to students in both mathematics and biology Presents chapters in modular format so coverage need not follow the Table of Contents Introduces projects appropriate for undergraduate research Utilizes freely accessible software for visualization, simulation, and analysis in modern biology Requires no calculus as a prerequisite Provides a complete Solutions Manual Features a companion website with supplementary resources


Mathematics and Computation

Mathematics and Computation

Author: Avi Wigderson

Publisher: Princeton University Press

Published: 2019-10-29

Total Pages: 434

ISBN-13: 0691189137

DOWNLOAD EBOOK

An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography


Book Synopsis Mathematics and Computation by : Avi Wigderson

Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography


Theory of Computational Complexity

Theory of Computational Complexity

Author: Ding-Zhu Du

Publisher: John Wiley & Sons

Published: 2014-07-18

Total Pages: 512

ISBN-13: 1118594975

DOWNLOAD EBOOK

Praise for the First Edition "...complete, up-to-date coverage of computational complexitytheory...the book promises to become the standard reference oncomputational complexity." -Zentralblatt MATH A thorough revision based on advances in the field ofcomputational complexity and readers’ feedback, the SecondEdition of Theory of Computational Complexity presentsupdates to the principles and applications essential tounderstanding modern computational complexity theory. The newedition continues to serve as a comprehensive resource on the useof software and computational approaches for solving algorithmicproblems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory ofComputational Complexity, Second Edition, examines the theoryand methods behind complexity theory, such as computational models,decision tree complexity, circuit complexity, and probabilisticcomplexity. The Second Edition also features recentdevelopments on areas such as NP-completeness theory, as wellas: A new combinatorial proof of the PCP theorem based on thenotion of expander graphs, a research area in the field of computerscience Additional exercises at varying levels of difficulty to furthertest comprehension of the presented material End-of-chapter literature reviews that summarize each topic andoffer additional sources for further study Theory of Computational Complexity, Second Edition, is anexcellent textbook for courses on computational theory andcomplexity at the graduate level. The book is also a usefulreference for practitioners in the fields of computer science,engineering, and mathematics who utilize state-of-the-art softwareand computational methods to conduct research. Athorough revision based on advances in the field of computationalcomplexity and readers’feedback,the Second Edition of Theory of Computational Complexity presentsupdates to theprinciplesand applications essential to understanding modern computationalcomplexitytheory.The new edition continues to serve as a comprehensive resource onthe use of softwareandcomputational approaches for solving algorithmic problems and therelated difficulties thatcanbe encountered.Maintainingextensive and detailed coverage, Theory of ComputationalComplexity, SecondEdition,examines the theory and methods behind complexity theory, such ascomputationalmodels,decision tree complexity, circuit complexity, and probabilisticcomplexity. The SecondEditionalso features recent developments on areas such as NP-completenesstheory, as well as:•A new combinatorial proof of the PCP theorem based on the notion ofexpandergraphs,a research area in the field of computer science•Additional exercises at varying levels of difficulty to furthertest comprehension ofthepresented material•End-of-chapter literature reviews that summarize each topic andoffer additionalsourcesfor further studyTheoryof Computational Complexity, Second Edition, is an excellenttextbook for courses oncomputationaltheory and complexity at the graduate level. The book is also auseful referenceforpractitioners in the fields of computer science, engineering, andmathematics who utilizestate-of-the-artsoftware and computational methods to conduct research.


Book Synopsis Theory of Computational Complexity by : Ding-Zhu Du

Download or read book Theory of Computational Complexity written by Ding-Zhu Du and published by John Wiley & Sons. This book was released on 2014-07-18 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "...complete, up-to-date coverage of computational complexitytheory...the book promises to become the standard reference oncomputational complexity." -Zentralblatt MATH A thorough revision based on advances in the field ofcomputational complexity and readers’ feedback, the SecondEdition of Theory of Computational Complexity presentsupdates to the principles and applications essential tounderstanding modern computational complexity theory. The newedition continues to serve as a comprehensive resource on the useof software and computational approaches for solving algorithmicproblems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory ofComputational Complexity, Second Edition, examines the theoryand methods behind complexity theory, such as computational models,decision tree complexity, circuit complexity, and probabilisticcomplexity. The Second Edition also features recentdevelopments on areas such as NP-completeness theory, as wellas: A new combinatorial proof of the PCP theorem based on thenotion of expander graphs, a research area in the field of computerscience Additional exercises at varying levels of difficulty to furthertest comprehension of the presented material End-of-chapter literature reviews that summarize each topic andoffer additional sources for further study Theory of Computational Complexity, Second Edition, is anexcellent textbook for courses on computational theory andcomplexity at the graduate level. The book is also a usefulreference for practitioners in the fields of computer science,engineering, and mathematics who utilize state-of-the-art softwareand computational methods to conduct research. Athorough revision based on advances in the field of computationalcomplexity and readers’feedback,the Second Edition of Theory of Computational Complexity presentsupdates to theprinciplesand applications essential to understanding modern computationalcomplexitytheory.The new edition continues to serve as a comprehensive resource onthe use of softwareandcomputational approaches for solving algorithmic problems and therelated difficulties thatcanbe encountered.Maintainingextensive and detailed coverage, Theory of ComputationalComplexity, SecondEdition,examines the theory and methods behind complexity theory, such ascomputationalmodels,decision tree complexity, circuit complexity, and probabilisticcomplexity. The SecondEditionalso features recent developments on areas such as NP-completenesstheory, as well as:•A new combinatorial proof of the PCP theorem based on the notion ofexpandergraphs,a research area in the field of computer science•Additional exercises at varying levels of difficulty to furthertest comprehension ofthepresented material•End-of-chapter literature reviews that summarize each topic andoffer additionalsourcesfor further studyTheoryof Computational Complexity, Second Edition, is an excellenttextbook for courses oncomputationaltheory and complexity at the graduate level. The book is also auseful referenceforpractitioners in the fields of computer science, engineering, andmathematics who utilizestate-of-the-artsoftware and computational methods to conduct research.