Measurement Uncertainty and Probability

Measurement Uncertainty and Probability

Author: Robin Willink

Publisher: Cambridge University Press

Published: 2013-02-14

Total Pages: 295

ISBN-13: 113961990X

DOWNLOAD EBOOK

A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.


Book Synopsis Measurement Uncertainty and Probability by : Robin Willink

Download or read book Measurement Uncertainty and Probability written by Robin Willink and published by Cambridge University Press. This book was released on 2013-02-14 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.


Uncertainty, Calibration and Probability

Uncertainty, Calibration and Probability

Author: C.F Dietrich

Publisher: Routledge

Published: 2017-07-12

Total Pages: 554

ISBN-13: 1351406280

DOWNLOAD EBOOK

All measurements are subject to error because no quantity can be known exactly; hence, any measurement has a probability of lying within a certain range. The more precise the measurement, the smaller the range of uncertainty. Uncertainty, Calibration and Probability is a comprehensive treatment of the statistics and methods of estimating these calibration uncertainties. The book features the general theory of uncertainty involving the combination (convolution) of non-Gaussian, student t, and Gaussian distributions; the use of rectangular distributions to represent systematic uncertainties; and measurable and nonmeasurable uncertainties that require estimation. The author also discusses sources of measurement errors and curve fitting with numerous examples of uncertainty case studies. Many useful tables and computational formulae are included as well. All formulations are discussed and demonstrated with the minimum of mathematical knowledge assumed. This second edition offers additional examples in each chapter, and detailed additions and alterations made to the text. New chapters consist of the general theory of uncertainty and applications to industry and a new section discusses the use of orthogonal polynomials in curve fitting. Focusing on practical problems of measurement, Uncertainty, Calibration and Probability is an invaluable reference tool for R&D laboratories in the engineering/manufacturing industries and for undergraduate and graduate students in physics, engineering, and metrology.


Book Synopsis Uncertainty, Calibration and Probability by : C.F Dietrich

Download or read book Uncertainty, Calibration and Probability written by C.F Dietrich and published by Routledge. This book was released on 2017-07-12 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: All measurements are subject to error because no quantity can be known exactly; hence, any measurement has a probability of lying within a certain range. The more precise the measurement, the smaller the range of uncertainty. Uncertainty, Calibration and Probability is a comprehensive treatment of the statistics and methods of estimating these calibration uncertainties. The book features the general theory of uncertainty involving the combination (convolution) of non-Gaussian, student t, and Gaussian distributions; the use of rectangular distributions to represent systematic uncertainties; and measurable and nonmeasurable uncertainties that require estimation. The author also discusses sources of measurement errors and curve fitting with numerous examples of uncertainty case studies. Many useful tables and computational formulae are included as well. All formulations are discussed and demonstrated with the minimum of mathematical knowledge assumed. This second edition offers additional examples in each chapter, and detailed additions and alterations made to the text. New chapters consist of the general theory of uncertainty and applications to industry and a new section discusses the use of orthogonal polynomials in curve fitting. Focusing on practical problems of measurement, Uncertainty, Calibration and Probability is an invaluable reference tool for R&D laboratories in the engineering/manufacturing industries and for undergraduate and graduate students in physics, engineering, and metrology.


Measurement Uncertainty and Probability

Measurement Uncertainty and Probability

Author: Robin Willink

Publisher:

Published: 2013

Total Pages: 276

ISBN-13: 9781139616188

DOWNLOAD EBOOK

"A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science"--


Book Synopsis Measurement Uncertainty and Probability by : Robin Willink

Download or read book Measurement Uncertainty and Probability written by Robin Willink and published by . This book was released on 2013 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science"--


Uncertainty, Calibration and Probability

Uncertainty, Calibration and Probability

Author: C.F Dietrich

Publisher: Routledge

Published: 2017-07-12

Total Pages: 408

ISBN-13: 1351406272

DOWNLOAD EBOOK

All measurements are subject to error because no quantity can be known exactly; hence, any measurement has a probability of lying within a certain range. The more precise the measurement, the smaller the range of uncertainty. Uncertainty, Calibration and Probability is a comprehensive treatment of the statistics and methods of estimating these calibration uncertainties. The book features the general theory of uncertainty involving the combination (convolution) of non-Gaussian, student t, and Gaussian distributions; the use of rectangular distributions to represent systematic uncertainties; and measurable and nonmeasurable uncertainties that require estimation. The author also discusses sources of measurement errors and curve fitting with numerous examples of uncertainty case studies. Many useful tables and computational formulae are included as well. All formulations are discussed and demonstrated with the minimum of mathematical knowledge assumed. This second edition offers additional examples in each chapter, and detailed additions and alterations made to the text. New chapters consist of the general theory of uncertainty and applications to industry and a new section discusses the use of orthogonal polynomials in curve fitting. Focusing on practical problems of measurement, Uncertainty, Calibration and Probability is an invaluable reference tool for R&D laboratories in the engineering/manufacturing industries and for undergraduate and graduate students in physics, engineering, and metrology.


Book Synopsis Uncertainty, Calibration and Probability by : C.F Dietrich

Download or read book Uncertainty, Calibration and Probability written by C.F Dietrich and published by Routledge. This book was released on 2017-07-12 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: All measurements are subject to error because no quantity can be known exactly; hence, any measurement has a probability of lying within a certain range. The more precise the measurement, the smaller the range of uncertainty. Uncertainty, Calibration and Probability is a comprehensive treatment of the statistics and methods of estimating these calibration uncertainties. The book features the general theory of uncertainty involving the combination (convolution) of non-Gaussian, student t, and Gaussian distributions; the use of rectangular distributions to represent systematic uncertainties; and measurable and nonmeasurable uncertainties that require estimation. The author also discusses sources of measurement errors and curve fitting with numerous examples of uncertainty case studies. Many useful tables and computational formulae are included as well. All formulations are discussed and demonstrated with the minimum of mathematical knowledge assumed. This second edition offers additional examples in each chapter, and detailed additions and alterations made to the text. New chapters consist of the general theory of uncertainty and applications to industry and a new section discusses the use of orthogonal polynomials in curve fitting. Focusing on practical problems of measurement, Uncertainty, Calibration and Probability is an invaluable reference tool for R&D laboratories in the engineering/manufacturing industries and for undergraduate and graduate students in physics, engineering, and metrology.


Measurement Uncertainty

Measurement Uncertainty

Author: Simona Salicone

Publisher: Springer Science & Business Media

Published: 2007-06-04

Total Pages: 235

ISBN-13: 0387463283

DOWNLOAD EBOOK

The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book’s unique approach.


Book Synopsis Measurement Uncertainty by : Simona Salicone

Download or read book Measurement Uncertainty written by Simona Salicone and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book’s unique approach.


Uncertainty, Calibration and Probability

Uncertainty, Calibration and Probability

Author: Cornelius Frank Dietrich

Publisher:

Published: 1973

Total Pages: 438

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Uncertainty, Calibration and Probability by : Cornelius Frank Dietrich

Download or read book Uncertainty, Calibration and Probability written by Cornelius Frank Dietrich and published by . This book was released on 1973 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Measurement Uncertainty

Measurement Uncertainty

Author: Ronald H. Dieck

Publisher: ISA

Published: 2007

Total Pages: 292

ISBN-13: 9781556179150

DOWNLOAD EBOOK

Literally an entire course between two covers, Measurement Uncertainty: Methods and Applications, Fourth Edition, presents engineering students with a comprehensive tutorial of measurement uncertainty methods in a logically categorized and readily utilized format. The new uncertainty technologies embodied in both U.S. and international standards have been incorporated into this text with a view toward understanding the strengths and weaknesses of both. The book is designed to also serve as a practical desk reference in situations that commonly confront an experimenter. The text presents the basics of the measurement uncertainty model, non-symmetrical systematic standard uncertainties, random standard uncertainties, the use of correlation, curve-fitting problems, and probability plotting, combining results from different test methods, calibration errors, and uncertainty propagation for both independent and dependent error sources. The author draws on years of experience in industry to direct special attention to the problem of developing confidence in uncertainty analysis results and using measurement uncertainty to select instrumentation systems.


Book Synopsis Measurement Uncertainty by : Ronald H. Dieck

Download or read book Measurement Uncertainty written by Ronald H. Dieck and published by ISA. This book was released on 2007 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Literally an entire course between two covers, Measurement Uncertainty: Methods and Applications, Fourth Edition, presents engineering students with a comprehensive tutorial of measurement uncertainty methods in a logically categorized and readily utilized format. The new uncertainty technologies embodied in both U.S. and international standards have been incorporated into this text with a view toward understanding the strengths and weaknesses of both. The book is designed to also serve as a practical desk reference in situations that commonly confront an experimenter. The text presents the basics of the measurement uncertainty model, non-symmetrical systematic standard uncertainties, random standard uncertainties, the use of correlation, curve-fitting problems, and probability plotting, combining results from different test methods, calibration errors, and uncertainty propagation for both independent and dependent error sources. The author draws on years of experience in industry to direct special attention to the problem of developing confidence in uncertainty analysis results and using measurement uncertainty to select instrumentation systems.


Measurement and Probability

Measurement and Probability

Author: Giovanni Battista Rossi

Publisher: Springer

Published: 2014-05-19

Total Pages: 288

ISBN-13: 9401788251

DOWNLOAD EBOOK

Measurement plays a fundamental role both in physical and behavioral sciences, as well as in engineering and technology: it is the link between abstract models and empirical reality and is a privileged method of gathering information from the real world. Is it possible to develop a single theory of measurement for the various domains of science and technology in which measurement is involved? This book takes the challenge by addressing the following main issues: What is the meaning of measurement? How do we measure? What can be measured? A theoretical framework that could truly be shared by scientists in different fields, ranging from physics and engineering to psychology is developed. The future in fact will require greater collaboration between science and technology and between different sciences. Measurement, which played a key role in the birth of modern science, can act as an essential interdisciplinary tool and language for this new scenario. A sound theoretical basis for addressing key problems in measurement is provided. These include perceptual measurement, the evaluation of uncertainty, the evaluation of inter-comparisons, the analysis of risks in decision-making and the characterization of dynamical measurement. Currently, increasing attention is paid to these issues due to their scientific, technical, economic and social impact. The book proposes a unified probabilistic approach to them which may allow more rational and effective solutions to be reached. Great care was taken to make the text as accessible as possible in several ways. Firstly, by giving preference to as interdisciplinary a terminology as possible; secondly, by carefully defining and discussing all key terms. This ensures that a wide readership, including people from different mathematical backgrounds and different understandings of measurement can all benefit from this work. Concerning mathematics, all the main results are preceded by intuitive discussions and illustrated by simple examples. Moreover, precise proofs are always included in order to enable the more demanding readers to make conscious and creative use of these ideas, and also to develop new ones. The book demonstrates that measurement, which is commonly understood to be a merely experimental matter, poses theoretical questions which are no less challenging than those arising in other, apparently more theoretical, disciplines.


Book Synopsis Measurement and Probability by : Giovanni Battista Rossi

Download or read book Measurement and Probability written by Giovanni Battista Rossi and published by Springer. This book was released on 2014-05-19 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measurement plays a fundamental role both in physical and behavioral sciences, as well as in engineering and technology: it is the link between abstract models and empirical reality and is a privileged method of gathering information from the real world. Is it possible to develop a single theory of measurement for the various domains of science and technology in which measurement is involved? This book takes the challenge by addressing the following main issues: What is the meaning of measurement? How do we measure? What can be measured? A theoretical framework that could truly be shared by scientists in different fields, ranging from physics and engineering to psychology is developed. The future in fact will require greater collaboration between science and technology and between different sciences. Measurement, which played a key role in the birth of modern science, can act as an essential interdisciplinary tool and language for this new scenario. A sound theoretical basis for addressing key problems in measurement is provided. These include perceptual measurement, the evaluation of uncertainty, the evaluation of inter-comparisons, the analysis of risks in decision-making and the characterization of dynamical measurement. Currently, increasing attention is paid to these issues due to their scientific, technical, economic and social impact. The book proposes a unified probabilistic approach to them which may allow more rational and effective solutions to be reached. Great care was taken to make the text as accessible as possible in several ways. Firstly, by giving preference to as interdisciplinary a terminology as possible; secondly, by carefully defining and discussing all key terms. This ensures that a wide readership, including people from different mathematical backgrounds and different understandings of measurement can all benefit from this work. Concerning mathematics, all the main results are preceded by intuitive discussions and illustrated by simple examples. Moreover, precise proofs are always included in order to enable the more demanding readers to make conscious and creative use of these ideas, and also to develop new ones. The book demonstrates that measurement, which is commonly understood to be a merely experimental matter, poses theoretical questions which are no less challenging than those arising in other, apparently more theoretical, disciplines.


Measuring Uncertainty within the Theory of Evidence

Measuring Uncertainty within the Theory of Evidence

Author: Simona Salicone

Publisher: Springer

Published: 2018-04-23

Total Pages: 330

ISBN-13: 331974139X

DOWNLOAD EBOOK

This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone’s Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, the material covers further developments of the Random Fuzzy Variable (RFV) approach to uncertainty and provides a more robust mathematical and metrological background to the combination of measurement results that leads to a more effective RFV combination method. While the first part of the book introduces measurement uncertainty, the Theory of Evidence, and fuzzy sets, the following parts bring together these concepts and derive an effective methodology for the evaluation and expression of measurement uncertainty. A supplementary downloadable program allows the readers to interact with the proposed approach by generating and combining RFVs through custom measurement functions. With numerous examples of applications, this book provides a comprehensive treatment of the RFV approach to uncertainty that is suitable for any graduate student or researcher with interests in the measurement field.


Book Synopsis Measuring Uncertainty within the Theory of Evidence by : Simona Salicone

Download or read book Measuring Uncertainty within the Theory of Evidence written by Simona Salicone and published by Springer. This book was released on 2018-04-23 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone’s Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, the material covers further developments of the Random Fuzzy Variable (RFV) approach to uncertainty and provides a more robust mathematical and metrological background to the combination of measurement results that leads to a more effective RFV combination method. While the first part of the book introduces measurement uncertainty, the Theory of Evidence, and fuzzy sets, the following parts bring together these concepts and derive an effective methodology for the evaluation and expression of measurement uncertainty. A supplementary downloadable program allows the readers to interact with the proposed approach by generating and combining RFVs through custom measurement functions. With numerous examples of applications, this book provides a comprehensive treatment of the RFV approach to uncertainty that is suitable for any graduate student or researcher with interests in the measurement field.


Probability and Bayesian Modeling

Probability and Bayesian Modeling

Author: Jim Albert

Publisher: CRC Press

Published: 2019-12-06

Total Pages: 553

ISBN-13: 1351030132

DOWNLOAD EBOOK

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.


Book Synopsis Probability and Bayesian Modeling by : Jim Albert

Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.