Medical Image Reconstruction

Medical Image Reconstruction

Author: Gengsheng Zeng

Publisher: Springer Science & Business Media

Published: 2010-12-28

Total Pages: 204

ISBN-13: 3642053688

DOWNLOAD EBOOK

"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.


Book Synopsis Medical Image Reconstruction by : Gengsheng Zeng

Download or read book Medical Image Reconstruction written by Gengsheng Zeng and published by Springer Science & Business Media. This book was released on 2010-12-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.


Machine Learning for Medical Image Reconstruction

Machine Learning for Medical Image Reconstruction

Author: Farah Deeba

Publisher: Springer Nature

Published: 2020-10-21

Total Pages: 170

ISBN-13: 3030615987

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Book Synopsis Machine Learning for Medical Image Reconstruction by : Farah Deeba

Download or read book Machine Learning for Medical Image Reconstruction written by Farah Deeba and published by Springer Nature. This book was released on 2020-10-21 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Magnetic Resonance Image Reconstruction

Magnetic Resonance Image Reconstruction

Author: Mehmet Akcakaya

Publisher: Academic Press

Published: 2022-11-04

Total Pages: 518

ISBN-13: 012822746X

DOWNLOAD EBOOK

Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. Explains the underlying principles of MRI reconstruction, along with the latest research“/li> Gives example codes for some of the methods presented Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction


Book Synopsis Magnetic Resonance Image Reconstruction by : Mehmet Akcakaya

Download or read book Magnetic Resonance Image Reconstruction written by Mehmet Akcakaya and published by Academic Press. This book was released on 2022-11-04 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. Explains the underlying principles of MRI reconstruction, along with the latest research“/li> Gives example codes for some of the methods presented Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction


Machine Learning for Medical Image Reconstruction

Machine Learning for Medical Image Reconstruction

Author: Florian Knoll

Publisher: Springer Nature

Published: 2019-10-24

Total Pages: 274

ISBN-13: 3030338436

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction.


Book Synopsis Machine Learning for Medical Image Reconstruction by : Florian Knoll

Download or read book Machine Learning for Medical Image Reconstruction written by Florian Knoll and published by Springer Nature. This book was released on 2019-10-24 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction.


Image Reconstruction

Image Reconstruction

Author: Gengsheng Lawrence Zeng

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-03-20

Total Pages: 289

ISBN-13: 3110498022

DOWNLOAD EBOOK

This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing


Book Synopsis Image Reconstruction by : Gengsheng Lawrence Zeng

Download or read book Image Reconstruction written by Gengsheng Lawrence Zeng and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-03-20 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing


Medical Image Processing, Reconstruction and Analysis

Medical Image Processing, Reconstruction and Analysis

Author: Jiri Jan

Publisher: CRC Press

Published: 2019-08-30

Total Pages: 619

ISBN-13: 1351387901

DOWNLOAD EBOOK

Differently oriented specialists and students involved in image processing and analysis need to have a firm grasp of concepts and methods used in this now widely utilized area. This book aims at being a single-source reference providing such foundations in the form of theoretical yet clear and easy to follow explanations of underlying generic concepts. Medical Image Processing, Reconstruction and Analysis – Concepts and Methods explains the general principles and methods of image processing and analysis, focusing namely on applications used in medical imaging. The content of this book is divided into three parts: Part I – Images as Multidimensional Signals provides the introduction to basic image processing theory, explaining it for both analogue and digital image representations. Part II – Imaging Systems as Data Sources offers a non-traditional view on imaging modalities, explaining their principles influencing properties of the obtained images that are to be subsequently processed by methods described in this book. Newly, principles of novel modalities, as spectral CT, functional MRI, ultrafast planar-wave ultrasonography and optical coherence tomography are included. Part III – Image Processing and Analysis focuses on tomographic image reconstruction, image fusion and methods of image enhancement and restoration; further it explains concepts of low-level image analysis as texture analysis, image segmentation and morphological transforms. A new chapter deals with selected areas of higher-level analysis, as principal and independent component analysis and particularly the novel analytic approach based on deep learning. Briefly, also the medical image-processing environment is treated, including processes for image archiving and communication. Features Presents a theoretically exact yet understandable explanation of image processing and analysis concepts and methods Offers practical interpretations of all theoretical conclusions, as derived in the consistent explanation Provides a concise treatment of a wide variety of medical imaging modalities including novel ones, with respect to properties of provided image data


Book Synopsis Medical Image Processing, Reconstruction and Analysis by : Jiri Jan

Download or read book Medical Image Processing, Reconstruction and Analysis written by Jiri Jan and published by CRC Press. This book was released on 2019-08-30 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differently oriented specialists and students involved in image processing and analysis need to have a firm grasp of concepts and methods used in this now widely utilized area. This book aims at being a single-source reference providing such foundations in the form of theoretical yet clear and easy to follow explanations of underlying generic concepts. Medical Image Processing, Reconstruction and Analysis – Concepts and Methods explains the general principles and methods of image processing and analysis, focusing namely on applications used in medical imaging. The content of this book is divided into three parts: Part I – Images as Multidimensional Signals provides the introduction to basic image processing theory, explaining it for both analogue and digital image representations. Part II – Imaging Systems as Data Sources offers a non-traditional view on imaging modalities, explaining their principles influencing properties of the obtained images that are to be subsequently processed by methods described in this book. Newly, principles of novel modalities, as spectral CT, functional MRI, ultrafast planar-wave ultrasonography and optical coherence tomography are included. Part III – Image Processing and Analysis focuses on tomographic image reconstruction, image fusion and methods of image enhancement and restoration; further it explains concepts of low-level image analysis as texture analysis, image segmentation and morphological transforms. A new chapter deals with selected areas of higher-level analysis, as principal and independent component analysis and particularly the novel analytic approach based on deep learning. Briefly, also the medical image-processing environment is treated, including processes for image archiving and communication. Features Presents a theoretically exact yet understandable explanation of image processing and analysis concepts and methods Offers practical interpretations of all theoretical conclusions, as derived in the consistent explanation Provides a concise treatment of a wide variety of medical imaging modalities including novel ones, with respect to properties of provided image data


Machine Learning for Medical Image Reconstruction

Machine Learning for Medical Image Reconstruction

Author: Nandinee Haq

Publisher: Springer

Published: 2021-10-31

Total Pages: 142

ISBN-13: 9783030885519

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2021, held in conjunction with MICCAI 2021, in October 2021. The workshop was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic. The 13 papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Book Synopsis Machine Learning for Medical Image Reconstruction by : Nandinee Haq

Download or read book Machine Learning for Medical Image Reconstruction written by Nandinee Haq and published by Springer. This book was released on 2021-10-31 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2021, held in conjunction with MICCAI 2021, in October 2021. The workshop was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic. The 13 papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Medical Image Processing, Reconstruction and Restoration

Medical Image Processing, Reconstruction and Restoration

Author: Jiri Jan

Publisher: CRC Press

Published: 2005-11-02

Total Pages: 755

ISBN-13: 1420030671

DOWNLOAD EBOOK

It is essential that differently oriented specialists and students involved in image processing have a firm grasp of the necessary concepts and principles. A single-source reference that can provide this foundation, as well as a thorough explanation of the techniques involved, particularly those found in medical image processing, would be an


Book Synopsis Medical Image Processing, Reconstruction and Restoration by : Jiri Jan

Download or read book Medical Image Processing, Reconstruction and Restoration written by Jiri Jan and published by CRC Press. This book was released on 2005-11-02 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is essential that differently oriented specialists and students involved in image processing have a firm grasp of the necessary concepts and principles. A single-source reference that can provide this foundation, as well as a thorough explanation of the techniques involved, particularly those found in medical image processing, would be an


MRI

MRI

Author: Angshul Majumdar

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 222

ISBN-13: 1482298899

DOWNLOAD EBOOK

The field of magnetic resonance imaging (MRI) has developed rapidly over the past decade, benefiting greatly from the newly developed framework of compressed sensing and its ability to drastically reduce MRI scan times. MRI: Physics, Image Reconstruction, and Analysis presents the latest research in MRI technology, emphasizing compressed sensing-based image reconstruction techniques. The book begins with a succinct introduction to the principles of MRI and then: Discusses the technology and applications of T1rho MRI Details the recovery of highly sampled functional MRIs Explains sparsity-based techniques for quantitative MRIs Describes multi-coil parallel MRI reconstruction techniques Examines off-line techniques in dynamic MRI reconstruction Explores advances in brain connectivity analysis using diffusion and functional MRIs Featuring chapters authored by field experts, MRI: Physics, Image Reconstruction, and Analysis delivers an authoritative and cutting-edge treatment of MRI reconstruction techniques. The book provides engineers, physicists, and graduate students with a comprehensive look at the state of the art of MRI.


Book Synopsis MRI by : Angshul Majumdar

Download or read book MRI written by Angshul Majumdar and published by CRC Press. This book was released on 2018-09-03 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of magnetic resonance imaging (MRI) has developed rapidly over the past decade, benefiting greatly from the newly developed framework of compressed sensing and its ability to drastically reduce MRI scan times. MRI: Physics, Image Reconstruction, and Analysis presents the latest research in MRI technology, emphasizing compressed sensing-based image reconstruction techniques. The book begins with a succinct introduction to the principles of MRI and then: Discusses the technology and applications of T1rho MRI Details the recovery of highly sampled functional MRIs Explains sparsity-based techniques for quantitative MRIs Describes multi-coil parallel MRI reconstruction techniques Examines off-line techniques in dynamic MRI reconstruction Explores advances in brain connectivity analysis using diffusion and functional MRIs Featuring chapters authored by field experts, MRI: Physics, Image Reconstruction, and Analysis delivers an authoritative and cutting-edge treatment of MRI reconstruction techniques. The book provides engineers, physicists, and graduate students with a comprehensive look at the state of the art of MRI.


Mathematical Methods in Image Reconstruction

Mathematical Methods in Image Reconstruction

Author: Frank Natterer

Publisher: SIAM

Published: 2001-01-01

Total Pages: 226

ISBN-13: 0898716225

DOWNLOAD EBOOK

This book provides readers with a superior understanding of the mathematical principles behind imaging.


Book Synopsis Mathematical Methods in Image Reconstruction by : Frank Natterer

Download or read book Mathematical Methods in Image Reconstruction written by Frank Natterer and published by SIAM. This book was released on 2001-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a superior understanding of the mathematical principles behind imaging.