Structure and Dynamics of Membranes

Structure and Dynamics of Membranes

Author: R. Lipowsky

Publisher: Elsevier

Published: 1995-06-15

Total Pages: 537

ISBN-13: 0080541917

DOWNLOAD EBOOK

The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateralphase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes withpolymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process ofcontact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned aboutthe interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion.


Book Synopsis Structure and Dynamics of Membranes by : R. Lipowsky

Download or read book Structure and Dynamics of Membranes written by R. Lipowsky and published by Elsevier. This book was released on 1995-06-15 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateralphase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes withpolymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process ofcontact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned aboutthe interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion.


Membrane Organization and Dynamics

Membrane Organization and Dynamics

Author: Amitabha Chattopadhyay

Publisher: Springer

Published: 2017-12-06

Total Pages: 387

ISBN-13: 3319666010

DOWNLOAD EBOOK

This volume brings together information on membrane organization and dynamics from a variety of spectroscopic, microscopic and simulation approaches, spanning a broad range of time scales. The implication of such dynamic information on membrane function in health and disease is a topic of contemporary interest. The chapters cover various aspects of membrane lipid and protein dynamics, explored using a battery of experimental and theoretical approaches. The synthesis of information and knowledge gained by utilizing multiple approaches will provide the reader with a comprehensive understanding of the underlying membrane dynamics and function, which will help to develop robust dynamic models for the understanding of membrane function in healthy and diseased states. In the last few years, crystal structures of an impressive number of membrane proteins have been reported, thanks to tremendous advances in membrane protein crystallization techniques. Some of these recently solved structures belong to the G protein-coupled receptor (GPCR) family, which are particularly difficult to crystallize due to their intrinsic flexibility. Nonetheless, these static structures do not provide the necessary information to understand the function of membrane proteins in the complex membrane milieu. This volume will address the dynamic nature of membrane proteins within the membrane and will provide the reader with an up-to date overview of the theory and practical approaches that can be used. This volume will be invaluable to researchers working in a wide range of scientific areas, from biochemistry and molecular biology to biophysics and protein science. Students of these fields will also find this volume very useful. This book will also be of great use to those who are interested in the dynamic nature of biological processes.


Book Synopsis Membrane Organization and Dynamics by : Amitabha Chattopadhyay

Download or read book Membrane Organization and Dynamics written by Amitabha Chattopadhyay and published by Springer. This book was released on 2017-12-06 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together information on membrane organization and dynamics from a variety of spectroscopic, microscopic and simulation approaches, spanning a broad range of time scales. The implication of such dynamic information on membrane function in health and disease is a topic of contemporary interest. The chapters cover various aspects of membrane lipid and protein dynamics, explored using a battery of experimental and theoretical approaches. The synthesis of information and knowledge gained by utilizing multiple approaches will provide the reader with a comprehensive understanding of the underlying membrane dynamics and function, which will help to develop robust dynamic models for the understanding of membrane function in healthy and diseased states. In the last few years, crystal structures of an impressive number of membrane proteins have been reported, thanks to tremendous advances in membrane protein crystallization techniques. Some of these recently solved structures belong to the G protein-coupled receptor (GPCR) family, which are particularly difficult to crystallize due to their intrinsic flexibility. Nonetheless, these static structures do not provide the necessary information to understand the function of membrane proteins in the complex membrane milieu. This volume will address the dynamic nature of membrane proteins within the membrane and will provide the reader with an up-to date overview of the theory and practical approaches that can be used. This volume will be invaluable to researchers working in a wide range of scientific areas, from biochemistry and molecular biology to biophysics and protein science. Students of these fields will also find this volume very useful. This book will also be of great use to those who are interested in the dynamic nature of biological processes.


The Physical Chemistry of MEMBRANES

The Physical Chemistry of MEMBRANES

Author: B. Silver

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 9401096287

DOWNLOAD EBOOK

Ls book is an account of what physical chemistry h . . to say about the structural, electrical and transport properties of biological membranes and their simplest model-the lipid bilayer. The accent throughout is on basic ideas. In contrast to the essentially descriptive ap proach characteristic of texts on membrane biochemistry, our underlying themes are the role of force and entropy in maintaining membrane organization, in determining the electric fields and ionic environment of membranes, and in regulating the passage of molecules and ions across membranes. Although experimental findings will always be the touch stone against which theory will be tried, no attempt is made to present an exhaustive survey of experimental data. On the other hand, there is discussion of the nature and limitations of the results obtainable by the major laboratory techniques. The treatment is at the level of an advanced undergraduate course or an introductory survey suitable for post graduate students carrying out research in biochemistry, biophysics, or physiology. The mathematical demands on the reader are trivial. The few forbidding equations appearing in Chapter 7 are soon whittled away to simple practical expressions. Although the current-voltage characteristics of nerves are traditionally the province of biophysics rather than physical chemistry, certain aspects relevant to the electrical activity of nerves are nevertheless included in this text, namely, mem brane and diffusion potentials and conductivity fluctuations. Where rival theories exist, conflicting convictions have been presented, but not necessarily accorded equal approbation. The author has a viewpoint.


Book Synopsis The Physical Chemistry of MEMBRANES by : B. Silver

Download or read book The Physical Chemistry of MEMBRANES written by B. Silver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ls book is an account of what physical chemistry h . . to say about the structural, electrical and transport properties of biological membranes and their simplest model-the lipid bilayer. The accent throughout is on basic ideas. In contrast to the essentially descriptive ap proach characteristic of texts on membrane biochemistry, our underlying themes are the role of force and entropy in maintaining membrane organization, in determining the electric fields and ionic environment of membranes, and in regulating the passage of molecules and ions across membranes. Although experimental findings will always be the touch stone against which theory will be tried, no attempt is made to present an exhaustive survey of experimental data. On the other hand, there is discussion of the nature and limitations of the results obtainable by the major laboratory techniques. The treatment is at the level of an advanced undergraduate course or an introductory survey suitable for post graduate students carrying out research in biochemistry, biophysics, or physiology. The mathematical demands on the reader are trivial. The few forbidding equations appearing in Chapter 7 are soon whittled away to simple practical expressions. Although the current-voltage characteristics of nerves are traditionally the province of biophysics rather than physical chemistry, certain aspects relevant to the electrical activity of nerves are nevertheless included in this text, namely, mem brane and diffusion potentials and conductivity fluctuations. Where rival theories exist, conflicting convictions have been presented, but not necessarily accorded equal approbation. The author has a viewpoint.


Membrane Dynamics and Domains

Membrane Dynamics and Domains

Author: Peter J. Quinn

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 502

ISBN-13: 1475758065

DOWNLOAD EBOOK

The fluid-mosaic model of membrane structure formulated by Singer and Nicolson in the early 1970s has proven to be a durable concept in terms of the principles governing the organization of the constituent lipids and proteins. During the past 30 or so years a great deal of information has accumulated on the composition of various cell membranes and how this is related to the dif ferent functions that membranes perform. Nevertheless, the task of explaining particular functions at the molecular level has been hampered by lack of struc tural detail at the atomic level. The reason for this is primarily the difficulty of crystallizing membrane proteins which require strategies that differ from those used to crystallize soluble proteins. The unique exception is bacteriorhodopsin of the purple membrane of Halobacterium halobium which is interpolated into a membrane that is neither fluid nor in a mosaic configuration. To date only 50 or so membrane proteins have been characterised to atomic resolution by diffraction methods, in contrast to the vast data accumulated on soluble proteins. Another factor that has been difficult to explain is the reason why the lipid compliment of membranes is often extremely complex. Many hundreds of different molecular species of lipid can be identified in some membranes. Remarkably, the particular composition of each membrane appears to be main tained within relatively narrow limits and its identity distinguished from other morphologically-distinct membranes.


Book Synopsis Membrane Dynamics and Domains by : Peter J. Quinn

Download or read book Membrane Dynamics and Domains written by Peter J. Quinn and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fluid-mosaic model of membrane structure formulated by Singer and Nicolson in the early 1970s has proven to be a durable concept in terms of the principles governing the organization of the constituent lipids and proteins. During the past 30 or so years a great deal of information has accumulated on the composition of various cell membranes and how this is related to the dif ferent functions that membranes perform. Nevertheless, the task of explaining particular functions at the molecular level has been hampered by lack of struc tural detail at the atomic level. The reason for this is primarily the difficulty of crystallizing membrane proteins which require strategies that differ from those used to crystallize soluble proteins. The unique exception is bacteriorhodopsin of the purple membrane of Halobacterium halobium which is interpolated into a membrane that is neither fluid nor in a mosaic configuration. To date only 50 or so membrane proteins have been characterised to atomic resolution by diffraction methods, in contrast to the vast data accumulated on soluble proteins. Another factor that has been difficult to explain is the reason why the lipid compliment of membranes is often extremely complex. Many hundreds of different molecular species of lipid can be identified in some membranes. Remarkably, the particular composition of each membrane appears to be main tained within relatively narrow limits and its identity distinguished from other morphologically-distinct membranes.


Characterization of Biological Membranes

Characterization of Biological Membranes

Author: Mu-Ping Nieh

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 647

ISBN-13: 3110544652

DOWNLOAD EBOOK

The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.


Book Synopsis Characterization of Biological Membranes by : Mu-Ping Nieh

Download or read book Characterization of Biological Membranes written by Mu-Ping Nieh and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.


Biological Membranes

Biological Membranes

Author: Kenneth M. Merz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 596

ISBN-13: 1468485806

DOWNLOAD EBOOK

The interface between a living cell and the surrounding world plays a critical role in numerous complex biological processes. Sperm/egg fusion, virus/cell fusion, exocytosis, endocytosis, and ion permeation are a few examples of processes involving membranes. In recent years, powerful tools such as X-ray crystal lography, electron microscopy, nuclear magnetic resonance, and infra-red and Raman spectroscopy have been developed to characterize the structure and dy namics of biomembranes. Despite this progress, many of the factors responsible for the function of biomembranes are still not well understood. The membrane is a very complicated supramolecular liquid-crystalline structure that is largely composed of lipids, forming a bilayer, to which proteins and other biomolecules are anchored. Often, the lipid bilayer environment is pictured as a hydropho bic structureless slab providing a thermodynamic driving force to partition the amino acids of a membrane protein according to their solubility. However, much of the molecular complexity of the phospholipid bilayer environment is ignored in such a simplified view. It is likely that the atomic details of the polar head group region and the transition from the bulk water to the hydrophobic core of the membrane are important. An understanding of the factors responsible for the function of biomembranes thus requires a better characterization at the molec ular level of how proteins interact with lipid molecules, of how lipids affect protein structure and of how lipid molecules might regulate protein function.


Book Synopsis Biological Membranes by : Kenneth M. Merz

Download or read book Biological Membranes written by Kenneth M. Merz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interface between a living cell and the surrounding world plays a critical role in numerous complex biological processes. Sperm/egg fusion, virus/cell fusion, exocytosis, endocytosis, and ion permeation are a few examples of processes involving membranes. In recent years, powerful tools such as X-ray crystal lography, electron microscopy, nuclear magnetic resonance, and infra-red and Raman spectroscopy have been developed to characterize the structure and dy namics of biomembranes. Despite this progress, many of the factors responsible for the function of biomembranes are still not well understood. The membrane is a very complicated supramolecular liquid-crystalline structure that is largely composed of lipids, forming a bilayer, to which proteins and other biomolecules are anchored. Often, the lipid bilayer environment is pictured as a hydropho bic structureless slab providing a thermodynamic driving force to partition the amino acids of a membrane protein according to their solubility. However, much of the molecular complexity of the phospholipid bilayer environment is ignored in such a simplified view. It is likely that the atomic details of the polar head group region and the transition from the bulk water to the hydrophobic core of the membrane are important. An understanding of the factors responsible for the function of biomembranes thus requires a better characterization at the molec ular level of how proteins interact with lipid molecules, of how lipids affect protein structure and of how lipid molecules might regulate protein function.


Biological Membranes: Structure, Biogenesis and Dynamics

Biological Membranes: Structure, Biogenesis and Dynamics

Author: Jos A.F. Op den Kamp

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 358

ISBN-13: 3642788467

DOWNLOAD EBOOK

The Advanced Study Institute on "Structure, Biogenesis and Dynamics of Biological Membranes, held in Cargese from June 14-26, 1993, has been dealing with four major topics in membrane biochemistry today: lipid dynamics and lipid-protein interactions, protein translocation and insertion, intracellular traffic aud protein structure and folding. The lecturers discussed these topics starting from several disciplines, including biochemistry, cell biology, genetics, and biophysics. This wayan interdisciplinary and very inte~sting view on biological membrane systems was obtained. At first an extensive overview of -mainly biophysical -techniques which can be used to study dynamic processes in membranes was presented. Sophisticated approaches such as ESR and NMR have been applied succesfully to unravel details of specific lipid-protein interactions. x ray analysis provides detailed structural information of several proteins and the possible implications for protein functions. Information obtained this way is complemented by studies on mechanisms and kinetics of protein folding. The latter information is indispensable when discussing protein translocation and insertion: proces:;es in which folding and unfolding play essential roles. Extensive insight was offered in the complicated machinery of phospholipid biosynthesis. In particular, the application of sophisticated genetic techniques has allowed a better understanding of the mechanisms regulating the synthetic machinery and detailed studies on a variety of mutants, lacking one or more of the essential enzymes, have resulted in the beginning of a bL!:


Book Synopsis Biological Membranes: Structure, Biogenesis and Dynamics by : Jos A.F. Op den Kamp

Download or read book Biological Membranes: Structure, Biogenesis and Dynamics written by Jos A.F. Op den Kamp and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Study Institute on "Structure, Biogenesis and Dynamics of Biological Membranes, held in Cargese from June 14-26, 1993, has been dealing with four major topics in membrane biochemistry today: lipid dynamics and lipid-protein interactions, protein translocation and insertion, intracellular traffic aud protein structure and folding. The lecturers discussed these topics starting from several disciplines, including biochemistry, cell biology, genetics, and biophysics. This wayan interdisciplinary and very inte~sting view on biological membrane systems was obtained. At first an extensive overview of -mainly biophysical -techniques which can be used to study dynamic processes in membranes was presented. Sophisticated approaches such as ESR and NMR have been applied succesfully to unravel details of specific lipid-protein interactions. x ray analysis provides detailed structural information of several proteins and the possible implications for protein functions. Information obtained this way is complemented by studies on mechanisms and kinetics of protein folding. The latter information is indispensable when discussing protein translocation and insertion: proces:;es in which folding and unfolding play essential roles. Extensive insight was offered in the complicated machinery of phospholipid biosynthesis. In particular, the application of sophisticated genetic techniques has allowed a better understanding of the mechanisms regulating the synthetic machinery and detailed studies on a variety of mutants, lacking one or more of the essential enzymes, have resulted in the beginning of a bL!:


Dynamic Aspects of Cell Surface Organization

Dynamic Aspects of Cell Surface Organization

Author: George Poste

Publisher: North-Holland

Published: 1977

Total Pages: 784

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Dynamic Aspects of Cell Surface Organization by : George Poste

Download or read book Dynamic Aspects of Cell Surface Organization written by George Poste and published by North-Holland. This book was released on 1977 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Physics of Biological Membranes

Physics of Biological Membranes

Author: Patricia Bassereau

Publisher: Springer

Published: 2018-12-30

Total Pages: 623

ISBN-13: 3030006301

DOWNLOAD EBOOK

This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.


Book Synopsis Physics of Biological Membranes by : Patricia Bassereau

Download or read book Physics of Biological Membranes written by Patricia Bassereau and published by Springer. This book was released on 2018-12-30 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.


Molecular Organization of Membranes: Where Biology Meets Biophysics

Molecular Organization of Membranes: Where Biology Meets Biophysics

Author: Marek Cebecauer

Publisher: Frontiers Media SA

Published: 2018-02-07

Total Pages: 150

ISBN-13: 2889454096

DOWNLOAD EBOOK

Biological membranes protect cells and organelles from the surrounding environment, but serve also as organising platforms for physiological processes such as cell signalling. The hydrophobic core of membranes is composed of lipids and proteins influencing each other. Local membrane composition and properties define its molecular organisation and, in this way, regulate the function of all associated molecules. Therefore, studying interactions of components, biophysical properties and overall membrane dynamics provides essential information on its function in the context of cell activities. Such knowledge can contribute to biomedical fields such as pharmacology, immunology, neurobiology and many others. The goal of the Research Topic entitled ‘Molecular organisation of membranes: where biology meets biophysics’ was to provide a comprehensive platform for publishing articles, reviews and opinions focused on membrane organisation and the forces behind its heterogeneous and dynamic structure. We collected 11 works which cover topics as diverse as general membrane organisation models, membrane trafficking and signalling regulation, biogenesis of caveolae, protein-lipid interactions and the importance of membrane-associated tetraspanins networks. The prevalent theme was the existence of membrane nanodomains. To this point, new emerging technologies are presented which own the power to bring a novel insight on how membrane nanodomains are formed and maintained and what is their function. We believe that the collection of works in this Research Topic brings forward some important questions which will stimulate further research in this difficult but exciting field.


Book Synopsis Molecular Organization of Membranes: Where Biology Meets Biophysics by : Marek Cebecauer

Download or read book Molecular Organization of Membranes: Where Biology Meets Biophysics written by Marek Cebecauer and published by Frontiers Media SA. This book was released on 2018-02-07 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological membranes protect cells and organelles from the surrounding environment, but serve also as organising platforms for physiological processes such as cell signalling. The hydrophobic core of membranes is composed of lipids and proteins influencing each other. Local membrane composition and properties define its molecular organisation and, in this way, regulate the function of all associated molecules. Therefore, studying interactions of components, biophysical properties and overall membrane dynamics provides essential information on its function in the context of cell activities. Such knowledge can contribute to biomedical fields such as pharmacology, immunology, neurobiology and many others. The goal of the Research Topic entitled ‘Molecular organisation of membranes: where biology meets biophysics’ was to provide a comprehensive platform for publishing articles, reviews and opinions focused on membrane organisation and the forces behind its heterogeneous and dynamic structure. We collected 11 works which cover topics as diverse as general membrane organisation models, membrane trafficking and signalling regulation, biogenesis of caveolae, protein-lipid interactions and the importance of membrane-associated tetraspanins networks. The prevalent theme was the existence of membrane nanodomains. To this point, new emerging technologies are presented which own the power to bring a novel insight on how membrane nanodomains are formed and maintained and what is their function. We believe that the collection of works in this Research Topic brings forward some important questions which will stimulate further research in this difficult but exciting field.