Ferroelectric-Gate Field Effect Transistor Memories

Ferroelectric-Gate Field Effect Transistor Memories

Author: Byung-Eun Park

Publisher: Springer Nature

Published: 2020-03-23

Total Pages: 421

ISBN-13: 9811512124

DOWNLOAD EBOOK

This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.


Book Synopsis Ferroelectric-Gate Field Effect Transistor Memories by : Byung-Eun Park

Download or read book Ferroelectric-Gate Field Effect Transistor Memories written by Byung-Eun Park and published by Springer Nature. This book was released on 2020-03-23 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.


The Fiftieth Gate

The Fiftieth Gate

Author: Mark Raphael Baker

Publisher: Text Publishing

Published: 2017-07-03

Total Pages: 368

ISBN-13: 1925410854

DOWNLOAD EBOOK

What right did I possess, as a child of survivors, to recreate an account of the Holocaust as if I was there? In writing The Fiftieth Gate, Mark Baker describes a journey from despair and death towards hope and life; it is the story of a son who enters his parents’ memories and, inside the darkness, finds light. In his evocative prose, Baker takes us to this place of horror, and then brings us back to reflect on these events and remember: ‘Never again’. Across the silence of fifty years, Baker and his family travel from Poland and Germany to Jerusalem and Melbourne, as the author struggles to uncover the mystery of his parents’ survival: his father Yossl was imprisoned in concentration camps and his mother Genia was forced into hiding after the Jews of her village were murdered. Twenty years on from its first publication, The Fiftieth Gate remains an extraordinary book. It has become a classic and has now sold over 70,000 copies. In Baker's new introduction, he recalls his motivations for writing this important memoir, and highlights how the testimonial culture in Holocaust studies has spread to awareness of other genocides and our responsibility (and failure) to prevent them. As well as The Fiftieth Gate, A Journey Through Memory, a seminal book on his parents’ experience during the Holocaust, Mark Raphael Baker has written a compelling memoir, Thirty Days, A Journey to the End of Love, about the recent death of his wife. He is Director of the Australian Centre for Jewish Civilisation and Associate Professor of Holocaust and Genocide Studies in the School at Monash University, Melbourne. ‘Heartrending and beautiful...This simply written, subtly complex narrative is instantly recognisable as a masterpiece, and the reader is rewarded by the light it sheds.’ Age ‘Combining precise historical research and poetic eloquence, Mark Baker’s The Fiftieth Gate remains the gold standard of second generation Holocaust memoirs on the occasion of its twentieth anniversary edition.’ Christopher R. Browning ‘Baker does with memory, what Rembrandt does with light. He uses it to model, to imagine, to illuminate, to astonish.’ Philip Adams


Book Synopsis The Fiftieth Gate by : Mark Raphael Baker

Download or read book The Fiftieth Gate written by Mark Raphael Baker and published by Text Publishing. This book was released on 2017-07-03 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: What right did I possess, as a child of survivors, to recreate an account of the Holocaust as if I was there? In writing The Fiftieth Gate, Mark Baker describes a journey from despair and death towards hope and life; it is the story of a son who enters his parents’ memories and, inside the darkness, finds light. In his evocative prose, Baker takes us to this place of horror, and then brings us back to reflect on these events and remember: ‘Never again’. Across the silence of fifty years, Baker and his family travel from Poland and Germany to Jerusalem and Melbourne, as the author struggles to uncover the mystery of his parents’ survival: his father Yossl was imprisoned in concentration camps and his mother Genia was forced into hiding after the Jews of her village were murdered. Twenty years on from its first publication, The Fiftieth Gate remains an extraordinary book. It has become a classic and has now sold over 70,000 copies. In Baker's new introduction, he recalls his motivations for writing this important memoir, and highlights how the testimonial culture in Holocaust studies has spread to awareness of other genocides and our responsibility (and failure) to prevent them. As well as The Fiftieth Gate, A Journey Through Memory, a seminal book on his parents’ experience during the Holocaust, Mark Raphael Baker has written a compelling memoir, Thirty Days, A Journey to the End of Love, about the recent death of his wife. He is Director of the Australian Centre for Jewish Civilisation and Associate Professor of Holocaust and Genocide Studies in the School at Monash University, Melbourne. ‘Heartrending and beautiful...This simply written, subtly complex narrative is instantly recognisable as a masterpiece, and the reader is rewarded by the light it sheds.’ Age ‘Combining precise historical research and poetic eloquence, Mark Baker’s The Fiftieth Gate remains the gold standard of second generation Holocaust memoirs on the occasion of its twentieth anniversary edition.’ Christopher R. Browning ‘Baker does with memory, what Rembrandt does with light. He uses it to model, to imagine, to illuminate, to astonish.’ Philip Adams


Semiconductor Memories and Systems

Semiconductor Memories and Systems

Author: Andrea Redaelli

Publisher: Woodhead Publishing

Published: 2022-06-07

Total Pages: 364

ISBN-13: 0128209461

DOWNLOAD EBOOK

Semiconductor Memories and Systems provides a comprehensive overview of the current state of semiconductor memory at the technology and system levels. After an introduction on market trends and memory applications, the book focuses on mainstream technologies, illustrating their current status, challenges and opportunities, with special attention paid to scalability paths. Technologies discussed include static random access memory (SRAM), dynamic random access memory (DRAM), non-volatile memory (NVM), and NAND flash memory. Embedded memory and requirements and system level needs for storage class memory are also addressed. Each chapter covers physical operating mechanisms, fabrication technologies, and the main challenges to scalability. Finally, the work reviews the emerging trends for storage class memory, mainly focusing on the advantages and opportunities of phase change based memory technologies. Features contributions from experts from leading companies in semiconductor memory Discusses physical operating mechanisms, fabrication technologies and paths to scalability for current and emerging semiconductor memories Reviews primary memory technologies, including SRAM, DRAM, NVM and NAND flash memory Includes emerging storage class memory technologies such as phase change memory


Book Synopsis Semiconductor Memories and Systems by : Andrea Redaelli

Download or read book Semiconductor Memories and Systems written by Andrea Redaelli and published by Woodhead Publishing. This book was released on 2022-06-07 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Memories and Systems provides a comprehensive overview of the current state of semiconductor memory at the technology and system levels. After an introduction on market trends and memory applications, the book focuses on mainstream technologies, illustrating their current status, challenges and opportunities, with special attention paid to scalability paths. Technologies discussed include static random access memory (SRAM), dynamic random access memory (DRAM), non-volatile memory (NVM), and NAND flash memory. Embedded memory and requirements and system level needs for storage class memory are also addressed. Each chapter covers physical operating mechanisms, fabrication technologies, and the main challenges to scalability. Finally, the work reviews the emerging trends for storage class memory, mainly focusing on the advantages and opportunities of phase change based memory technologies. Features contributions from experts from leading companies in semiconductor memory Discusses physical operating mechanisms, fabrication technologies and paths to scalability for current and emerging semiconductor memories Reviews primary memory technologies, including SRAM, DRAM, NVM and NAND flash memory Includes emerging storage class memory technologies such as phase change memory


Rad-hard Semiconductor Memories

Rad-hard Semiconductor Memories

Author: Cristiano Calligaro

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 417

ISBN-13: 1000793060

DOWNLOAD EBOOK

Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using different technology nodes.In the first part of the book, a preliminary overview of the effects of radiation in space, with a specific focus on memories, will be conducted to enable the reader to understand why specific design solutions are adopted to mitigate hard and soft errors. The second part will be devoted to RHBD (Radiation Hardening by Design) techniques for semiconductor components with a specific focus on memories. The approach will follow a top-down scheme starting from RHBD at architectural level (how to build a rad-hard floor-plan), at circuit level (how to mitigate radiation effects by handling transistors in the proper way) and at layout level (how to shape a layout to mitigate radiation effects).After the description of the mitigation techniques, the book enters in the core of the topic covering SRAMs (synchronous, asynchronous, single port and dual port) and PROMs (based on AntiFuse OTP technologies), describing how to design a rad-hard flash memory and fostering RHBD toward emerging memories like ReRAM. The last part will be a leap into emerging memories at a very early stage, not yet ready for industrial use in silicon but candidates to become an option for the next wave of rad-hard components. Technical topics discussed in the book include:  Radiation effects on semiconductor components (TID, SEE) Radiation Hardening by Design (RHBD) Techniques Rad-hard SRAMs Rad-hard PROMs Rad-hard Flash NVMs Rad-hard ReRAMs Rad-hard emerging technologies


Book Synopsis Rad-hard Semiconductor Memories by : Cristiano Calligaro

Download or read book Rad-hard Semiconductor Memories written by Cristiano Calligaro and published by CRC Press. This book was released on 2022-09-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using different technology nodes.In the first part of the book, a preliminary overview of the effects of radiation in space, with a specific focus on memories, will be conducted to enable the reader to understand why specific design solutions are adopted to mitigate hard and soft errors. The second part will be devoted to RHBD (Radiation Hardening by Design) techniques for semiconductor components with a specific focus on memories. The approach will follow a top-down scheme starting from RHBD at architectural level (how to build a rad-hard floor-plan), at circuit level (how to mitigate radiation effects by handling transistors in the proper way) and at layout level (how to shape a layout to mitigate radiation effects).After the description of the mitigation techniques, the book enters in the core of the topic covering SRAMs (synchronous, asynchronous, single port and dual port) and PROMs (based on AntiFuse OTP technologies), describing how to design a rad-hard flash memory and fostering RHBD toward emerging memories like ReRAM. The last part will be a leap into emerging memories at a very early stage, not yet ready for industrial use in silicon but candidates to become an option for the next wave of rad-hard components. Technical topics discussed in the book include:  Radiation effects on semiconductor components (TID, SEE) Radiation Hardening by Design (RHBD) Techniques Rad-hard SRAMs Rad-hard PROMs Rad-hard Flash NVMs Rad-hard ReRAMs Rad-hard emerging technologies


Flash Memories

Flash Memories

Author: Paulo Cappelletti

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 544

ISBN-13: 1461550157

DOWNLOAD EBOOK

A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5].


Book Synopsis Flash Memories by : Paulo Cappelletti

Download or read book Flash Memories written by Paulo Cappelletti and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5].


Memories for the Intelligent Internet of Things

Memories for the Intelligent Internet of Things

Author: Betty Prince

Publisher: John Wiley & Sons

Published: 2018-06-11

Total Pages: 342

ISBN-13: 1119296358

DOWNLOAD EBOOK

A detailed, practical review of state-of-the-art implementations of memory in IoT hardware As the Internet of Things (IoT) technology continues to evolve and become increasingly common across an array of specialized and consumer product applications, the demand on engineers to design new generations of flexible, low-cost, low power embedded memories into IoT hardware becomes ever greater. This book helps them meet that demand. Coauthored by a leading international expert and multiple patent holder, this book gets engineers up to speed on state-of-the-art implementations of memory in IoT hardware. Memories for the Intelligent Internet of Things covers an array of common and cutting-edge IoT embedded memory implementations. Ultra-low-power memories for IoT devices-including plastic and polymer circuitry for specialized applications, such as medical electronics-are described. The authors explore microcontrollers with embedded memory used for smart control of a multitude of Internet devices. They also consider neuromorphic memories made in Ferroelectric RAM (FeRAM), Resistance RAM (ReRAM), and Magnetic RAM (MRAM) technologies to implement artificial intelligence (AI) for the collection, processing, and presentation of large quantities of data generated by IoT hardware. Throughout the focus is on memory technologies which are complementary metal oxide semiconductor (CMOS) compatible, including embedded floating gate and charge trapping EEPROM/Flash along with FeRAMS, FeFETs, MRAMs and ReRAMs. Provides a timely, highly practical look at state-of-the-art IoT memory implementations for an array of product applications Synthesizes basic science with original analysis of memory technologies for Internet of Things (IoT) based on the authors' extensive experience in the field Focuses on practical and timely applications throughout Features numerous illustrations, tables, application requirements, and photographs Considers memory related security issues in IoT devices Memories for the Intelligent Internet of Things is a valuable working resource for electrical engineers and engineering managers working in the electronics system and semiconductor industries. It is also an indispensable reference/text for graduate and advanced undergraduate students interested in the latest developments in integrated circuit devices and systems.


Book Synopsis Memories for the Intelligent Internet of Things by : Betty Prince

Download or read book Memories for the Intelligent Internet of Things written by Betty Prince and published by John Wiley & Sons. This book was released on 2018-06-11 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed, practical review of state-of-the-art implementations of memory in IoT hardware As the Internet of Things (IoT) technology continues to evolve and become increasingly common across an array of specialized and consumer product applications, the demand on engineers to design new generations of flexible, low-cost, low power embedded memories into IoT hardware becomes ever greater. This book helps them meet that demand. Coauthored by a leading international expert and multiple patent holder, this book gets engineers up to speed on state-of-the-art implementations of memory in IoT hardware. Memories for the Intelligent Internet of Things covers an array of common and cutting-edge IoT embedded memory implementations. Ultra-low-power memories for IoT devices-including plastic and polymer circuitry for specialized applications, such as medical electronics-are described. The authors explore microcontrollers with embedded memory used for smart control of a multitude of Internet devices. They also consider neuromorphic memories made in Ferroelectric RAM (FeRAM), Resistance RAM (ReRAM), and Magnetic RAM (MRAM) technologies to implement artificial intelligence (AI) for the collection, processing, and presentation of large quantities of data generated by IoT hardware. Throughout the focus is on memory technologies which are complementary metal oxide semiconductor (CMOS) compatible, including embedded floating gate and charge trapping EEPROM/Flash along with FeRAMS, FeFETs, MRAMs and ReRAMs. Provides a timely, highly practical look at state-of-the-art IoT memory implementations for an array of product applications Synthesizes basic science with original analysis of memory technologies for Internet of Things (IoT) based on the authors' extensive experience in the field Focuses on practical and timely applications throughout Features numerous illustrations, tables, application requirements, and photographs Considers memory related security issues in IoT devices Memories for the Intelligent Internet of Things is a valuable working resource for electrical engineers and engineering managers working in the electronics system and semiconductor industries. It is also an indispensable reference/text for graduate and advanced undergraduate students interested in the latest developments in integrated circuit devices and systems.


Machine Learning and Non-volatile Memories

Machine Learning and Non-volatile Memories

Author: Rino Micheloni

Publisher: Springer Nature

Published: 2022-05-25

Total Pages: 178

ISBN-13: 303103841X

DOWNLOAD EBOOK

This book presents the basics of both NAND flash storage and machine learning, detailing the storage problems the latter can help to solve. At a first sight, machine learning and non-volatile memories seem very far away from each other. Machine learning implies mathematics, algorithms and a lot of computation; non-volatile memories are solid-state devices used to store information, having the amazing capability of retaining the information even without power supply. This book will help the reader understand how these two worlds can work together, bringing a lot of value to each other. In particular, the book covers two main fields of application: analog neural networks (NNs) and solid-state drives (SSDs). After reviewing the basics of machine learning in Chapter 1, Chapter 2 shows how neural networks can mimic the human brain; to accomplish this result, neural networks have to perform a specific computation called vector-by-matrix (VbM) multiplication, which is particularly power hungry. In the digital domain, VbM is implemented by means of logic gates which dictate both the area occupation and the power consumption; the combination of the two poses serious challenges to the hardware scalability, thus limiting the size of the neural network itself, especially in terms of the number of processable inputs and outputs. Non-volatile memories (phase change memories in Chapter 3, resistive memories in Chapter 4, and 3D flash memories in Chapter 5 and Chapter 6) enable the analog implementation of the VbM (also called “neuromorphic architecture”), which can easily beat the equivalent digital implementation in terms of both speed and energy consumption. SSDs and flash memories are strictly coupled together; as 3D flash scales, there is a significant amount of work that has to be done in order to optimize the overall performances of SSDs. Machine learning has emerged as a viable solution in many stages of this process. After introducing the main flash reliability issues, Chapter 7 shows both supervised and un-supervised machine learning techniques that can be applied to NAND. In addition, Chapter 7 deals with algorithms and techniques for a pro-active reliability management of SSDs. Last but not least, the last section of Chapter 7 discusses the next challenge for machine learning in the context of the so-called computational storage. No doubt that machine learning and non-volatile memories can help each other, but we are just at the beginning of the journey; this book helps researchers understand the basics of each field by providing real application examples, hopefully, providing a good starting point for the next level of development.


Book Synopsis Machine Learning and Non-volatile Memories by : Rino Micheloni

Download or read book Machine Learning and Non-volatile Memories written by Rino Micheloni and published by Springer Nature. This book was released on 2022-05-25 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basics of both NAND flash storage and machine learning, detailing the storage problems the latter can help to solve. At a first sight, machine learning and non-volatile memories seem very far away from each other. Machine learning implies mathematics, algorithms and a lot of computation; non-volatile memories are solid-state devices used to store information, having the amazing capability of retaining the information even without power supply. This book will help the reader understand how these two worlds can work together, bringing a lot of value to each other. In particular, the book covers two main fields of application: analog neural networks (NNs) and solid-state drives (SSDs). After reviewing the basics of machine learning in Chapter 1, Chapter 2 shows how neural networks can mimic the human brain; to accomplish this result, neural networks have to perform a specific computation called vector-by-matrix (VbM) multiplication, which is particularly power hungry. In the digital domain, VbM is implemented by means of logic gates which dictate both the area occupation and the power consumption; the combination of the two poses serious challenges to the hardware scalability, thus limiting the size of the neural network itself, especially in terms of the number of processable inputs and outputs. Non-volatile memories (phase change memories in Chapter 3, resistive memories in Chapter 4, and 3D flash memories in Chapter 5 and Chapter 6) enable the analog implementation of the VbM (also called “neuromorphic architecture”), which can easily beat the equivalent digital implementation in terms of both speed and energy consumption. SSDs and flash memories are strictly coupled together; as 3D flash scales, there is a significant amount of work that has to be done in order to optimize the overall performances of SSDs. Machine learning has emerged as a viable solution in many stages of this process. After introducing the main flash reliability issues, Chapter 7 shows both supervised and un-supervised machine learning techniques that can be applied to NAND. In addition, Chapter 7 deals with algorithms and techniques for a pro-active reliability management of SSDs. Last but not least, the last section of Chapter 7 discusses the next challenge for machine learning in the context of the so-called computational storage. No doubt that machine learning and non-volatile memories can help each other, but we are just at the beginning of the journey; this book helps researchers understand the basics of each field by providing real application examples, hopefully, providing a good starting point for the next level of development.


3D Flash Memories

3D Flash Memories

Author: Rino Micheloni

Publisher: Springer

Published: 2016-05-26

Total Pages: 380

ISBN-13: 9401775125

DOWNLOAD EBOOK

This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.


Book Synopsis 3D Flash Memories by : Rino Micheloni

Download or read book 3D Flash Memories written by Rino Micheloni and published by Springer. This book was released on 2016-05-26 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.


Charge-Trapping Non-Volatile Memories

Charge-Trapping Non-Volatile Memories

Author: Panagiotis Dimitrakis

Publisher: Springer

Published: 2017-02-14

Total Pages: 211

ISBN-13: 3319487051

DOWNLOAD EBOOK

This book describes the technology of charge-trapping non-volatile memories and their uses. The authors explain the device physics of each device architecture and provide a concrete description of the materials involved and the fundamental properties of the technology. Modern material properties, used as charge-trapping layers, for new applications are introduced. Provides a comprehensive overview of the technology for charge-trapping non-volatile memories; Details new architectures and current modeling concepts for non-volatile memory devices; Focuses on conduction through multi-layer gate dielectrics stacks.


Book Synopsis Charge-Trapping Non-Volatile Memories by : Panagiotis Dimitrakis

Download or read book Charge-Trapping Non-Volatile Memories written by Panagiotis Dimitrakis and published by Springer. This book was released on 2017-02-14 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the technology of charge-trapping non-volatile memories and their uses. The authors explain the device physics of each device architecture and provide a concrete description of the materials involved and the fundamental properties of the technology. Modern material properties, used as charge-trapping layers, for new applications are introduced. Provides a comprehensive overview of the technology for charge-trapping non-volatile memories; Details new architectures and current modeling concepts for non-volatile memory devices; Focuses on conduction through multi-layer gate dielectrics stacks.


Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing

Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing

Author: Suting Han

Publisher: Woodhead Publishing

Published: 2020-05-26

Total Pages: 352

ISBN-13: 0128226064

DOWNLOAD EBOOK

Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing summarizes advances in the development of photo-electroactive memories and neuromorphic computing systems, suggests possible solutions to the challenges of device design, and evaluates the prospects for commercial applications. Sections covers developments in electro-photoactive memory, and photonic neuromorphic and in-memory computing, including discussions on design concepts, operation principles and basic storage mechanism of optoelectronic memory devices, potential materials from organic molecules, semiconductor quantum dots to two-dimensional materials with desirable electrical and optical properties, device challenges, and possible strategies. This comprehensive, accessible and up-to-date book will be of particular interest to graduate students and researchers in solid-state electronics. It is an invaluable systematic introduction to the memory characteristics, operation principles and storage mechanisms of the latest reported electro-photoactive memory devices. Reviews the most promising materials to enable emerging computing memory and data storage devices, including one- and two-dimensional materials, metal oxides, semiconductors, organic materials, and more Discusses fundamental mechanisms and design strategies for two- and three-terminal device structures Addresses device challenges and strategies to enable translation of optical and optoelectronic technologies


Book Synopsis Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing by : Suting Han

Download or read book Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing written by Suting Han and published by Woodhead Publishing. This book was released on 2020-05-26 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing summarizes advances in the development of photo-electroactive memories and neuromorphic computing systems, suggests possible solutions to the challenges of device design, and evaluates the prospects for commercial applications. Sections covers developments in electro-photoactive memory, and photonic neuromorphic and in-memory computing, including discussions on design concepts, operation principles and basic storage mechanism of optoelectronic memory devices, potential materials from organic molecules, semiconductor quantum dots to two-dimensional materials with desirable electrical and optical properties, device challenges, and possible strategies. This comprehensive, accessible and up-to-date book will be of particular interest to graduate students and researchers in solid-state electronics. It is an invaluable systematic introduction to the memory characteristics, operation principles and storage mechanisms of the latest reported electro-photoactive memory devices. Reviews the most promising materials to enable emerging computing memory and data storage devices, including one- and two-dimensional materials, metal oxides, semiconductors, organic materials, and more Discusses fundamental mechanisms and design strategies for two- and three-terminal device structures Addresses device challenges and strategies to enable translation of optical and optoelectronic technologies