Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines

Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines

Author: Dirk Linse

Publisher:

Published: 2013-11-13

Total Pages: 189

ISBN-13: 9783954045532

DOWNLOAD EBOOK


Book Synopsis Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines by : Dirk Linse

Download or read book Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines written by Dirk Linse and published by . This book was released on 2013-11-13 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines

Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines

Author: Andreas Manz

Publisher: Logos Verlag Berlin GmbH

Published: 2016-08-18

Total Pages: 263

ISBN-13: 3832542817

DOWNLOAD EBOOK

Downsizing of modern gasoline engines with direct injection is a key concept for achieving future CO22 emission targets. However, high power densities and optimum efficiency are limited by an uncontrolled autoignition of the unburned air-fuel mixture, the so-called spark knock phenomena. By a combination of three-dimensional Computational Fluid Dynamics (3D-CFD) and experiments incorporating optical diagnostics, this work presents an integral approach for predicting combustion and autoignition in Spark Ignition (SI) engines. The turbulent premixed combustion and flame front propagation in 3D-CFD is modeled with the G-equation combustion model, i.e. a laminar flamelet approach, in combination with the level set method. Autoignition in the unburned gas zone is modeled with the Shell model based on reduced chemical reactions using optimized reaction rate coefficients for different octane numbers (ON) as well as engine relevant pressures, temperatures and EGR rates. The basic functionality and sensitivities of improved sub-models, e.g. laminar flame speed, are proven in simplified test cases followed by adequate engine test cases. It is shown that the G-equation combustion model performs well even on unstructured grids with polyhedral cells and coarse grid resolution. The validation of the knock model with respect to temporal and spatial knock onset is done with fiber optical spark plug measurements and statistical evaluation of individual knocking cycles with a frequency based pressure analysis. The results show a good correlation with the Shell autoignition relevant species in the simulation. The combined model approach with G-equation and Shell autoignition in an active formulation enables a realistic representation of thin flame fronts and hence the thermodynamic conditions prior to knocking by taking into account the ignition chemistry in unburned gas, temperature fluctuations and self-acceleration effects due to pre-reactions. By the modeling approach and simulation methodology presented in this work the overall predictive capability for the virtual development of future knockproof SI engines is improved.


Book Synopsis Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines by : Andreas Manz

Download or read book Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines written by Andreas Manz and published by Logos Verlag Berlin GmbH. This book was released on 2016-08-18 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Downsizing of modern gasoline engines with direct injection is a key concept for achieving future CO22 emission targets. However, high power densities and optimum efficiency are limited by an uncontrolled autoignition of the unburned air-fuel mixture, the so-called spark knock phenomena. By a combination of three-dimensional Computational Fluid Dynamics (3D-CFD) and experiments incorporating optical diagnostics, this work presents an integral approach for predicting combustion and autoignition in Spark Ignition (SI) engines. The turbulent premixed combustion and flame front propagation in 3D-CFD is modeled with the G-equation combustion model, i.e. a laminar flamelet approach, in combination with the level set method. Autoignition in the unburned gas zone is modeled with the Shell model based on reduced chemical reactions using optimized reaction rate coefficients for different octane numbers (ON) as well as engine relevant pressures, temperatures and EGR rates. The basic functionality and sensitivities of improved sub-models, e.g. laminar flame speed, are proven in simplified test cases followed by adequate engine test cases. It is shown that the G-equation combustion model performs well even on unstructured grids with polyhedral cells and coarse grid resolution. The validation of the knock model with respect to temporal and spatial knock onset is done with fiber optical spark plug measurements and statistical evaluation of individual knocking cycles with a frequency based pressure analysis. The results show a good correlation with the Shell autoignition relevant species in the simulation. The combined model approach with G-equation and Shell autoignition in an active formulation enables a realistic representation of thin flame fronts and hence the thermodynamic conditions prior to knocking by taking into account the ignition chemistry in unburned gas, temperature fluctuations and self-acceleration effects due to pre-reactions. By the modeling approach and simulation methodology presented in this work the overall predictive capability for the virtual development of future knockproof SI engines is improved.


Highway Safety Literature

Highway Safety Literature

Author:

Publisher:

Published: 1973

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Highway Safety Literature by :

Download or read book Highway Safety Literature written by and published by . This book was released on 1973 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Introduction to Internal Combustion Engines

Introduction to Internal Combustion Engines

Author: Richard Stone

Publisher: Bloomsbury Publishing

Published: 2017-09-16

Total Pages: 516

ISBN-13: 1137028297

DOWNLOAD EBOOK

Now in its fourth edition, this textbook remains the indispensable text to guide readers through automotive or mechanical engineering, both at university and beyond. Thoroughly updated, clear, comprehensive and well-illustrated, with a wealth of worked examples and problems, its combination of theory and applied practice aids in the understanding of internal combustion engines, from thermodynamics and combustion to fluid mechanics and materials science. This textbook is aimed at third year undergraduate or postgraduate students on mechanical or automotive engineering degrees. New to this Edition: - Fully updated for changes in technology in this fast-moving area - New material on direct injection spark engines, supercharging and renewable fuels - Solutions manual online for lecturers


Book Synopsis Introduction to Internal Combustion Engines by : Richard Stone

Download or read book Introduction to Internal Combustion Engines written by Richard Stone and published by Bloomsbury Publishing. This book was released on 2017-09-16 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its fourth edition, this textbook remains the indispensable text to guide readers through automotive or mechanical engineering, both at university and beyond. Thoroughly updated, clear, comprehensive and well-illustrated, with a wealth of worked examples and problems, its combination of theory and applied practice aids in the understanding of internal combustion engines, from thermodynamics and combustion to fluid mechanics and materials science. This textbook is aimed at third year undergraduate or postgraduate students on mechanical or automotive engineering degrees. New to this Edition: - Fully updated for changes in technology in this fast-moving area - New material on direct injection spark engines, supercharging and renewable fuels - Solutions manual online for lecturers


Transformational Science And Technology For The Current And Future Force (With Cd-rom) - Proceedings Of The 24th Us Army Science Conference

Transformational Science And Technology For The Current And Future Force (With Cd-rom) - Proceedings Of The 24th Us Army Science Conference

Author: A M Rajendran

Publisher: World Scientific

Published: 2006-11-08

Total Pages: 601

ISBN-13: 9814476684

DOWNLOAD EBOOK

This book provides the reader with a unique opportunity to understand the basic and applied research and technology areas that support applications to enable Transformational capabilities for US Soldiers. The research papers are in line with the theme of the 24th Army Science Conference: “Transformational Science and Technology for the Current and Future Force,” emphasizing the critical role of Science and Technology in addressing the significant challenges posed by Global War On Terrorism while simultaneously developing Transformational capabilities for the Future Force.


Book Synopsis Transformational Science And Technology For The Current And Future Force (With Cd-rom) - Proceedings Of The 24th Us Army Science Conference by : A M Rajendran

Download or read book Transformational Science And Technology For The Current And Future Force (With Cd-rom) - Proceedings Of The 24th Us Army Science Conference written by A M Rajendran and published by World Scientific. This book was released on 2006-11-08 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with a unique opportunity to understand the basic and applied research and technology areas that support applications to enable Transformational capabilities for US Soldiers. The research papers are in line with the theme of the 24th Army Science Conference: “Transformational Science and Technology for the Current and Future Force,” emphasizing the critical role of Science and Technology in addressing the significant challenges posed by Global War On Terrorism while simultaneously developing Transformational capabilities for the Future Force.


Knocking in Gasoline Engines

Knocking in Gasoline Engines

Author: Michael Günther

Publisher: Springer

Published: 2017-11-21

Total Pages: 384

ISBN-13: 3319697609

DOWNLOAD EBOOK

The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.


Book Synopsis Knocking in Gasoline Engines by : Michael Günther

Download or read book Knocking in Gasoline Engines written by Michael Günther and published by Springer. This book was released on 2017-11-21 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.


Chemical Abstracts

Chemical Abstracts

Author:

Publisher:

Published: 2002

Total Pages: 2018

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Chemical Abstracts by :

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2018 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Technical Literature Abstracts

Technical Literature Abstracts

Author: Society of Automotive Engineers

Publisher:

Published: 1998

Total Pages: 664

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Technical Literature Abstracts by : Society of Automotive Engineers

Download or read book Technical Literature Abstracts written by Society of Automotive Engineers and published by . This book was released on 1998 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt:


SAE Transactions and Literature

SAE Transactions and Literature

Author:

Publisher:

Published: 1974

Total Pages: 352

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis SAE Transactions and Literature by :

Download or read book SAE Transactions and Literature written by and published by . This book was released on 1974 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Annual Index/abstracts of SAE Technical Papers 2004

Annual Index/abstracts of SAE Technical Papers 2004

Author:

Publisher:

Published: 2005

Total Pages: 962

ISBN-13: 9780768015577

DOWNLOAD EBOOK


Book Synopsis Annual Index/abstracts of SAE Technical Papers 2004 by :

Download or read book Annual Index/abstracts of SAE Technical Papers 2004 written by and published by . This book was released on 2005 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt: