Modelling Non-Markovian Quantum Systems Using Tensor Networks

Modelling Non-Markovian Quantum Systems Using Tensor Networks

Author: Aidan Strathearn

Publisher: Springer Nature

Published: 2020-08-31

Total Pages: 113

ISBN-13: 3030549755

DOWNLOAD EBOOK

This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.


Book Synopsis Modelling Non-Markovian Quantum Systems Using Tensor Networks by : Aidan Strathearn

Download or read book Modelling Non-Markovian Quantum Systems Using Tensor Networks written by Aidan Strathearn and published by Springer Nature. This book was released on 2020-08-31 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.


Tensor Network Contractions

Tensor Network Contractions

Author: Shi-Ju Ran

Publisher: Springer Nature

Published: 2020-01-27

Total Pages: 160

ISBN-13: 3030344894

DOWNLOAD EBOOK

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.


Book Synopsis Tensor Network Contractions by : Shi-Ju Ran

Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.


Introduction to Tensor Network Methods

Introduction to Tensor Network Methods

Author: Simone Montangero

Publisher: Springer

Published: 2018-11-28

Total Pages: 172

ISBN-13: 3030014096

DOWNLOAD EBOOK

This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.


Book Synopsis Introduction to Tensor Network Methods by : Simone Montangero

Download or read book Introduction to Tensor Network Methods written by Simone Montangero and published by Springer. This book was released on 2018-11-28 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.


Simulation with Entropy Thermodynamics

Simulation with Entropy Thermodynamics

Author: Christophe Goupil

Publisher: MDPI

Published: 2021-03-11

Total Pages: 222

ISBN-13: 3036501142

DOWNLOAD EBOOK

Beyond its identification with the second law of thermodynamics, entropy is a formidable tool for describing systems in their relationship with their environment. This book proposes to go through some of these situations where the formulation of entropy, and more precisely, the production of entropy in out-of-equilibrium processes, makes it possible to forge an approach to the behavior of very different systems. Whether for dimensioning structures; influencing parameter variability; or optimizing power, efficiency, or waste heat reduction, simulations based on entropy production offer a tool that is both compact and reliable. In the case of systems marked by complexity, it appears to be the only way. In that sense, realistic optimization can be carried out, integrating within the same framework both the system and all the constraints and boundary conditions that define it. Simulations based on entropy give the researcher a powerful analytical framework that crosses the disciplines of physics and links them together.


Book Synopsis Simulation with Entropy Thermodynamics by : Christophe Goupil

Download or read book Simulation with Entropy Thermodynamics written by Christophe Goupil and published by MDPI. This book was released on 2021-03-11 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beyond its identification with the second law of thermodynamics, entropy is a formidable tool for describing systems in their relationship with their environment. This book proposes to go through some of these situations where the formulation of entropy, and more precisely, the production of entropy in out-of-equilibrium processes, makes it possible to forge an approach to the behavior of very different systems. Whether for dimensioning structures; influencing parameter variability; or optimizing power, efficiency, or waste heat reduction, simulations based on entropy production offer a tool that is both compact and reliable. In the case of systems marked by complexity, it appears to be the only way. In that sense, realistic optimization can be carried out, integrating within the same framework both the system and all the constraints and boundary conditions that define it. Simulations based on entropy give the researcher a powerful analytical framework that crosses the disciplines of physics and links them together.


Quantum Information and Computation for Chemistry, Volume 154

Quantum Information and Computation for Chemistry, Volume 154

Author: Sabre Kais

Publisher: John Wiley & Sons

Published: 2014-01-31

Total Pages: 522

ISBN-13: 1118742605

DOWNLOAD EBOOK

Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.


Book Synopsis Quantum Information and Computation for Chemistry, Volume 154 by : Sabre Kais

Download or read book Quantum Information and Computation for Chemistry, Volume 154 written by Sabre Kais and published by John Wiley & Sons. This book was released on 2014-01-31 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.


Vibrationally-Mediated Chemical Dynamics

Vibrationally-Mediated Chemical Dynamics

Author: Jacob Dean

Publisher: Frontiers Media SA

Published: 2021-06-11

Total Pages: 109

ISBN-13: 2889668746

DOWNLOAD EBOOK


Book Synopsis Vibrationally-Mediated Chemical Dynamics by : Jacob Dean

Download or read book Vibrationally-Mediated Chemical Dynamics written by Jacob Dean and published by Frontiers Media SA. This book was released on 2021-06-11 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Neural-Network Simulation of Strongly Correlated Quantum Systems

Neural-Network Simulation of Strongly Correlated Quantum Systems

Author: Stefanie Czischek

Publisher: Springer Nature

Published: 2020-08-27

Total Pages: 205

ISBN-13: 3030527158

DOWNLOAD EBOOK

Quantum systems with many degrees of freedom are inherently difficult to describe and simulate quantitatively. The space of possible states is, in general, exponentially large in the number of degrees of freedom such as the number of particles it contains. Standard digital high-performance computing is generally too weak to capture all the necessary details, such that alternative quantum simulation devices have been proposed as a solution. Artificial neural networks, with their high non-local connectivity between the neuron degrees of freedom, may soon gain importance in simulating static and dynamical behavior of quantum systems. Particularly promising candidates are neuromorphic realizations based on analog electronic circuits which are being developed to capture, e.g., the functioning of biologically relevant networks. In turn, such neuromorphic systems may be used to measure and control real quantum many-body systems online. This thesis lays an important foundation for the realization of quantum simulations by means of neuromorphic hardware, for using quantum physics as an input to classical neural nets and, in turn, for using network results to be fed back to quantum systems. The necessary foundations on both sides, quantum physics and artificial neural networks, are described, providing a valuable reference for researchers from these different communities who need to understand the foundations of both.


Book Synopsis Neural-Network Simulation of Strongly Correlated Quantum Systems by : Stefanie Czischek

Download or read book Neural-Network Simulation of Strongly Correlated Quantum Systems written by Stefanie Czischek and published by Springer Nature. This book was released on 2020-08-27 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum systems with many degrees of freedom are inherently difficult to describe and simulate quantitatively. The space of possible states is, in general, exponentially large in the number of degrees of freedom such as the number of particles it contains. Standard digital high-performance computing is generally too weak to capture all the necessary details, such that alternative quantum simulation devices have been proposed as a solution. Artificial neural networks, with their high non-local connectivity between the neuron degrees of freedom, may soon gain importance in simulating static and dynamical behavior of quantum systems. Particularly promising candidates are neuromorphic realizations based on analog electronic circuits which are being developed to capture, e.g., the functioning of biologically relevant networks. In turn, such neuromorphic systems may be used to measure and control real quantum many-body systems online. This thesis lays an important foundation for the realization of quantum simulations by means of neuromorphic hardware, for using quantum physics as an input to classical neural nets and, in turn, for using network results to be fed back to quantum systems. The necessary foundations on both sides, quantum physics and artificial neural networks, are described, providing a valuable reference for researchers from these different communities who need to understand the foundations of both.


Tensor Network Contractions

Tensor Network Contractions

Author: Maciej Lewenstein

Publisher:

Published: 2020-10-08

Total Pages: 158

ISBN-13: 9781013273629

DOWNLOAD EBOOK

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.


Book Synopsis Tensor Network Contractions by : Maciej Lewenstein

Download or read book Tensor Network Contractions written by Maciej Lewenstein and published by . This book was released on 2020-10-08 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.


Mathematics for Future Computing and Communications

Mathematics for Future Computing and Communications

Author: Liao Heng

Publisher: Cambridge University Press

Published: 2021-12-16

Total Pages: 399

ISBN-13: 1316513580

DOWNLOAD EBOOK

A panorama of new ideas in mathematics that are driving innovation in computing and communications.


Book Synopsis Mathematics for Future Computing and Communications by : Liao Heng

Download or read book Mathematics for Future Computing and Communications written by Liao Heng and published by Cambridge University Press. This book was released on 2021-12-16 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: A panorama of new ideas in mathematics that are driving innovation in computing and communications.


Rethinking Causality in Quantum Mechanics

Rethinking Causality in Quantum Mechanics

Author: Christina Giarmatzi

Publisher: Springer Nature

Published: 2019-10-21

Total Pages: 157

ISBN-13: 303031930X

DOWNLOAD EBOOK

Causality is central to understanding the mechanisms of nature: some event "A" is the cause of another event “B”. Surprisingly, causality does not follow this simple rule in quantum physics: due to to quantum superposition we might be led to believe that "A causes B” and that "B causes A”. This idea is not only important to the foundations of physics but also leads to practical advantages: a quantum circuit with such indefinite causality performs computationally better than one with definite causality. This thesis provides one of the first comprehensive introductions to quantum causality, and presents a number of advances. It provides an extension and generalization of a framework that enables us to study causality within quantum mechanics, thereby setting the stage for the rest of the work. This comprises: mathematical tools to define causality in terms of probabilities; computational tools to prove indefinite causality in an experiment; means to experimentally test particular causal structures; and finally an algorithm that detects the exact causal structure in an quantum experiment.


Book Synopsis Rethinking Causality in Quantum Mechanics by : Christina Giarmatzi

Download or read book Rethinking Causality in Quantum Mechanics written by Christina Giarmatzi and published by Springer Nature. This book was released on 2019-10-21 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality is central to understanding the mechanisms of nature: some event "A" is the cause of another event “B”. Surprisingly, causality does not follow this simple rule in quantum physics: due to to quantum superposition we might be led to believe that "A causes B” and that "B causes A”. This idea is not only important to the foundations of physics but also leads to practical advantages: a quantum circuit with such indefinite causality performs computationally better than one with definite causality. This thesis provides one of the first comprehensive introductions to quantum causality, and presents a number of advances. It provides an extension and generalization of a framework that enables us to study causality within quantum mechanics, thereby setting the stage for the rest of the work. This comprises: mathematical tools to define causality in terms of probabilities; computational tools to prove indefinite causality in an experiment; means to experimentally test particular causal structures; and finally an algorithm that detects the exact causal structure in an quantum experiment.