Monte Carlo Methods for Radiation Transport

Monte Carlo Methods for Radiation Transport

Author: Oleg N. Vassiliev

Publisher: Springer

Published: 2016-10-17

Total Pages: 281

ISBN-13: 3319441418

DOWNLOAD EBOOK

This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals—giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.


Book Synopsis Monte Carlo Methods for Radiation Transport by : Oleg N. Vassiliev

Download or read book Monte Carlo Methods for Radiation Transport written by Oleg N. Vassiliev and published by Springer. This book was released on 2016-10-17 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals—giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.


A Monte Carlo Primer

A Monte Carlo Primer

Author: Stephen A. Dupree

Publisher: Springer Science & Business Media

Published: 2012-09-07

Total Pages: 348

ISBN-13: 1441984917

DOWNLOAD EBOOK

The mathematical technique of Monte Carlo, as applied to the transport of sub-atomic particles, has been described in numerous reports and books since its formal development in the 1940s. Most of these instructional efforts have been directed either at the mathematical basis of the technique or at its practical application as embodied in the several large, formal computer codes available for performing Monte Carlo transport calculations. This book attempts to fill what appears to be a gap in this Monte Carlo literature between the mathematics and the software. Thus, while the mathematical basis for Monte Carlo transport is covered in some detail, emphasis is placed on the application of the technique to the solution of practical radiation transport problems. This is done by using the PC as the basic teaching tool. This book assumes the reader has a knowledge of integral calculus, neutron transport theory, and Fortran programming. It also assumes the reader has available a PC with a Fortran compiler. Any PC of reasonable size should be adequate to reproduce the examples or solve the exercises contained herein. The authors believe it is important for the reader to execute these examples and exercises, and by doing so to become accomplished at preparing appropriate software for solving radiation transport problems using Monte Carlo. The step from the software described in this book to the use of production Monte Carlo codes should be straightforward.


Book Synopsis A Monte Carlo Primer by : Stephen A. Dupree

Download or read book A Monte Carlo Primer written by Stephen A. Dupree and published by Springer Science & Business Media. This book was released on 2012-09-07 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical technique of Monte Carlo, as applied to the transport of sub-atomic particles, has been described in numerous reports and books since its formal development in the 1940s. Most of these instructional efforts have been directed either at the mathematical basis of the technique or at its practical application as embodied in the several large, formal computer codes available for performing Monte Carlo transport calculations. This book attempts to fill what appears to be a gap in this Monte Carlo literature between the mathematics and the software. Thus, while the mathematical basis for Monte Carlo transport is covered in some detail, emphasis is placed on the application of the technique to the solution of practical radiation transport problems. This is done by using the PC as the basic teaching tool. This book assumes the reader has a knowledge of integral calculus, neutron transport theory, and Fortran programming. It also assumes the reader has available a PC with a Fortran compiler. Any PC of reasonable size should be adequate to reproduce the examples or solve the exercises contained herein. The authors believe it is important for the reader to execute these examples and exercises, and by doing so to become accomplished at preparing appropriate software for solving radiation transport problems using Monte Carlo. The step from the software described in this book to the use of production Monte Carlo codes should be straightforward.


Monte Carlo Methods for Particle Transport

Monte Carlo Methods for Particle Transport

Author: Alireza Haghighat

Publisher: CRC Press

Published: 2020-08-09

Total Pages: 214

ISBN-13: 042958220X

DOWNLOAD EBOOK

Fully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods. Describes general and particle-transport-specific automated variance reduction techniques Presents Monte Carlo particle transport eigenvalue issues and methodologies to address these issues Presents detailed derivation of existing and advanced formulations and algorithms with real-world examples from the author’s research activities


Book Synopsis Monte Carlo Methods for Particle Transport by : Alireza Haghighat

Download or read book Monte Carlo Methods for Particle Transport written by Alireza Haghighat and published by CRC Press. This book was released on 2020-08-09 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods. Describes general and particle-transport-specific automated variance reduction techniques Presents Monte Carlo particle transport eigenvalue issues and methodologies to address these issues Presents detailed derivation of existing and advanced formulations and algorithms with real-world examples from the author’s research activities


Methods in Monte Carlo Solution of the Radiation Transport Equation

Methods in Monte Carlo Solution of the Radiation Transport Equation

Author: Malvin H. Kalos

Publisher:

Published: 1962

Total Pages: 64

ISBN-13:

DOWNLOAD EBOOK

A discussion is given of certain methods of importance sampling and scoring in the Monte Carlo solution of the radiation transport equation.


Book Synopsis Methods in Monte Carlo Solution of the Radiation Transport Equation by : Malvin H. Kalos

Download or read book Methods in Monte Carlo Solution of the Radiation Transport Equation written by Malvin H. Kalos and published by . This book was released on 1962 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: A discussion is given of certain methods of importance sampling and scoring in the Monte Carlo solution of the radiation transport equation.


Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

Author: Andreas Kling

Publisher: Springer Science & Business Media

Published: 2014-02-22

Total Pages: 1200

ISBN-13: 3642182119

DOWNLOAD EBOOK

This book focuses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications. Special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields.


Book Synopsis Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications by : Andreas Kling

Download or read book Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications written by Andreas Kling and published by Springer Science & Business Media. This book was released on 2014-02-22 with total page 1200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications. Special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields.


Exploring Monte Carlo Methods

Exploring Monte Carlo Methods

Author: William L. Dunn

Publisher: Elsevier

Published: 2022-06-07

Total Pages: 594

ISBN-13: 0128197455

DOWNLOAD EBOOK

Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. Provides a comprehensive yet concise treatment of Monte Carlo methods Uses the famous "Buffon’s needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions


Book Synopsis Exploring Monte Carlo Methods by : William L. Dunn

Download or read book Exploring Monte Carlo Methods written by William L. Dunn and published by Elsevier. This book was released on 2022-06-07 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. Provides a comprehensive yet concise treatment of Monte Carlo methods Uses the famous "Buffon’s needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions


Monte Carlo Techniques in Radiation Therapy

Monte Carlo Techniques in Radiation Therapy

Author: Frank Verhaegen

Publisher: CRC Press

Published: 2021-11-29

Total Pages: 291

ISBN-13: 1000455556

DOWNLOAD EBOOK

Targets both students or professionals, both novice and experienced, in medical radiotherapy physics. Combines overviews of development, methods and references to facilitate Monte Carlo studies. Focuses on applications in radiotherapy.


Book Synopsis Monte Carlo Techniques in Radiation Therapy by : Frank Verhaegen

Download or read book Monte Carlo Techniques in Radiation Therapy written by Frank Verhaegen and published by CRC Press. This book was released on 2021-11-29 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Targets both students or professionals, both novice and experienced, in medical radiotherapy physics. Combines overviews of development, methods and references to facilitate Monte Carlo studies. Focuses on applications in radiotherapy.


Monte Carlo Methods for Particle Transport

Monte Carlo Methods for Particle Transport

Author: Alireza Haghighat

Publisher:

Published: 2015

Total Pages: 273

ISBN-13: 9781523107568

DOWNLOAD EBOOK

The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: introduces the particle importance equation and its use for variance reduction; describes general and particle-transport-specific variance reduction techniques; presents particle transport eigenvalue issues and methodologies to address these issues; explores advanced formulations based on the author's research activities; discusses parallel processing concepts and factors affecting parallel performance.


Book Synopsis Monte Carlo Methods for Particle Transport by : Alireza Haghighat

Download or read book Monte Carlo Methods for Particle Transport written by Alireza Haghighat and published by . This book was released on 2015 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: introduces the particle importance equation and its use for variance reduction; describes general and particle-transport-specific variance reduction techniques; presents particle transport eigenvalue issues and methodologies to address these issues; explores advanced formulations based on the author's research activities; discusses parallel processing concepts and factors affecting parallel performance.


A Monte Carlo Primer

A Monte Carlo Primer

Author: Stephen A. Dupree

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 236

ISBN-13: 1441990364

DOWNLOAD EBOOK

In Volume 1, A Monte Carlo Primer - A Practical Approach to Radiation Transport (the "Primer"), we attempt to provide a simple, convenient, and step-by-step approach to the development, basic understanding, and use of Monte Carlo methods in radiation transport. Using the PC, the Primer begins by developing basic Monte Carlo codes to solve simple transport problems, then introduces a teaching tool, the Probabilistic Framework Code (PFC), as a standard platform for assembling, testing, and executing the various Monte Carlo techniques that are presented. This second volume attempts to continue this approach by using both custom Monte Carlo codes and PFC to apply the concepts explained in the Primer to obtain solutions to the exercises given at the end of each chapter in the Primer. A relatively modest number of exercises is included in the Primer. Some ambiguity is left in the statement of many of the exercises because the intent is not to have the user write a particular, uniquely correct piece of coding that produces a specific number as a result, but rather to encourage the user to think about the problems and develop further the concepts explained in the text. Because in most cases there is more than one way to solve a Monte Carlo transport problem, we believe that working with the concepts illustrated by the exercises is more important than obtaining anyone particular solution.


Book Synopsis A Monte Carlo Primer by : Stephen A. Dupree

Download or read book A Monte Carlo Primer written by Stephen A. Dupree and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Volume 1, A Monte Carlo Primer - A Practical Approach to Radiation Transport (the "Primer"), we attempt to provide a simple, convenient, and step-by-step approach to the development, basic understanding, and use of Monte Carlo methods in radiation transport. Using the PC, the Primer begins by developing basic Monte Carlo codes to solve simple transport problems, then introduces a teaching tool, the Probabilistic Framework Code (PFC), as a standard platform for assembling, testing, and executing the various Monte Carlo techniques that are presented. This second volume attempts to continue this approach by using both custom Monte Carlo codes and PFC to apply the concepts explained in the Primer to obtain solutions to the exercises given at the end of each chapter in the Primer. A relatively modest number of exercises is included in the Primer. Some ambiguity is left in the statement of many of the exercises because the intent is not to have the user write a particular, uniquely correct piece of coding that produces a specific number as a result, but rather to encourage the user to think about the problems and develop further the concepts explained in the text. Because in most cases there is more than one way to solve a Monte Carlo transport problem, we believe that working with the concepts illustrated by the exercises is more important than obtaining anyone particular solution.


Monte Carlo Techniques in Radiation Therapy

Monte Carlo Techniques in Radiation Therapy

Author: Joao Seco

Publisher: CRC Press

Published: 2013-03-25

Total Pages: 344

ISBN-13: 1466507926

DOWNLOAD EBOOK

Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book—the first of its kind—addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific to electron, photon, and proton ion beams and brachytherapy; and the optimization of treatment planning, radiation dosimetry, and quality assurance. Useful to clinical physicists, graduate students, and researchers, this book provides a detailed, state-of-the-art guide to the fundamentals, application, and customization of Monte Carlo techniques in radiotherapy. Through real-world examples, it illustrates the use of Monte Carlo modeling and simulations in dose calculation, beam delivery, kilovoltage and megavoltage imaging, proton radiography, device design, and much more.


Book Synopsis Monte Carlo Techniques in Radiation Therapy by : Joao Seco

Download or read book Monte Carlo Techniques in Radiation Therapy written by Joao Seco and published by CRC Press. This book was released on 2013-03-25 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book—the first of its kind—addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific to electron, photon, and proton ion beams and brachytherapy; and the optimization of treatment planning, radiation dosimetry, and quality assurance. Useful to clinical physicists, graduate students, and researchers, this book provides a detailed, state-of-the-art guide to the fundamentals, application, and customization of Monte Carlo techniques in radiotherapy. Through real-world examples, it illustrates the use of Monte Carlo modeling and simulations in dose calculation, beam delivery, kilovoltage and megavoltage imaging, proton radiography, device design, and much more.