Multiscale Models in Mechano and Tumor Biology

Multiscale Models in Mechano and Tumor Biology

Author: Alf Gerisch

Publisher: Springer

Published: 2018-03-16

Total Pages: 195

ISBN-13: 3319733710

DOWNLOAD EBOOK

This book presents and discusses the state of the art and future perspectives in mathematical modeling and homogenization techniques with the focus on addressing key physiological issues in the context of multiphase healthy and malignant biological materials. The highly interdisciplinary content brings together contributions from scientists with complementary areas of expertise, such as pure and applied mathematicians, engineers, and biophysicists. The book also features the lecture notes from a half-day introductory course on asymptotic homogenization. These notes are suitable for undergraduate mathematics or physics students, while the other chapters are aimed at graduate students and researchers.


Book Synopsis Multiscale Models in Mechano and Tumor Biology by : Alf Gerisch

Download or read book Multiscale Models in Mechano and Tumor Biology written by Alf Gerisch and published by Springer. This book was released on 2018-03-16 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and discusses the state of the art and future perspectives in mathematical modeling and homogenization techniques with the focus on addressing key physiological issues in the context of multiphase healthy and malignant biological materials. The highly interdisciplinary content brings together contributions from scientists with complementary areas of expertise, such as pure and applied mathematicians, engineers, and biophysicists. The book also features the lecture notes from a half-day introductory course on asymptotic homogenization. These notes are suitable for undergraduate mathematics or physics students, while the other chapters are aimed at graduate students and researchers.


Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology

Author: Suvranu De

Publisher: Springer

Published: 2014-10-10

Total Pages: 287

ISBN-13: 1447165993

DOWNLOAD EBOOK

Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.


Book Synopsis Multiscale Modeling in Biomechanics and Mechanobiology by : Suvranu De

Download or read book Multiscale Modeling in Biomechanics and Mechanobiology written by Suvranu De and published by Springer. This book was released on 2014-10-10 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.


Multiscale Modeling of Cancer

Multiscale Modeling of Cancer

Author: Vittorio Cristini

Publisher: Cambridge University Press

Published: 2010-09-09

Total Pages: 299

ISBN-13: 1139491504

DOWNLOAD EBOOK

Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.


Book Synopsis Multiscale Modeling of Cancer by : Vittorio Cristini

Download or read book Multiscale Modeling of Cancer written by Vittorio Cristini and published by Cambridge University Press. This book was released on 2010-09-09 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.


Multiscale Cancer Modeling

Multiscale Cancer Modeling

Author: Thomas S. Deisboeck

Publisher: CRC Press

Published: 2010-12-08

Total Pages: 492

ISBN-13: 1439814422

DOWNLOAD EBOOK

Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat


Book Synopsis Multiscale Cancer Modeling by : Thomas S. Deisboeck

Download or read book Multiscale Cancer Modeling written by Thomas S. Deisboeck and published by CRC Press. This book was released on 2010-12-08 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat


The Mathematics of Mechanobiology

The Mathematics of Mechanobiology

Author: Antonio DeSimone

Publisher: Springer Nature

Published: 2020-06-29

Total Pages: 217

ISBN-13: 3030451976

DOWNLOAD EBOOK

This book presents the state of the art in mathematical research on modelling the mechanics of biological systems – a science at the intersection between biology, mechanics and mathematics known as mechanobiology. The book gathers comprehensive surveys of the most significant areas of mechanobiology: cell motility and locomotion by shape control (Antonio DeSimone); models of cell motion and tissue growth (Benoît Perthame); numerical simulation of cardiac electromechanics (Alfio Quarteroni); and power-stroke-driven muscle contraction (Lev Truskinovsky). Each section is self-contained in terms of the biomechanical background, and the content is accessible to all readers with a basic understanding of differential equations and numerical analysis. The book disentangles the phenomenological complexity of the biomechanical problems, while at the same time addressing the mathematical complexity with invaluable clarity. The book is intended for a wide audience, in particular graduate students and applied mathematicians interested in entering this fascinating field.


Book Synopsis The Mathematics of Mechanobiology by : Antonio DeSimone

Download or read book The Mathematics of Mechanobiology written by Antonio DeSimone and published by Springer Nature. This book was released on 2020-06-29 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art in mathematical research on modelling the mechanics of biological systems – a science at the intersection between biology, mechanics and mathematics known as mechanobiology. The book gathers comprehensive surveys of the most significant areas of mechanobiology: cell motility and locomotion by shape control (Antonio DeSimone); models of cell motion and tissue growth (Benoît Perthame); numerical simulation of cardiac electromechanics (Alfio Quarteroni); and power-stroke-driven muscle contraction (Lev Truskinovsky). Each section is self-contained in terms of the biomechanical background, and the content is accessible to all readers with a basic understanding of differential equations and numerical analysis. The book disentangles the phenomenological complexity of the biomechanical problems, while at the same time addressing the mathematical complexity with invaluable clarity. The book is intended for a wide audience, in particular graduate students and applied mathematicians interested in entering this fascinating field.


Constitutive Modelling of Solid Continua

Constitutive Modelling of Solid Continua

Author: José Merodio

Publisher: Springer Nature

Published: 2019-11-14

Total Pages: 397

ISBN-13: 3030315479

DOWNLOAD EBOOK

This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.


Book Synopsis Constitutive Modelling of Solid Continua by : José Merodio

Download or read book Constitutive Modelling of Solid Continua written by José Merodio and published by Springer Nature. This book was released on 2019-11-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.


Modelling and Computational Approaches for Multi-Scale Phenomena in Cancer Research: From Cancer Evolution to Cancer Treatment

Modelling and Computational Approaches for Multi-Scale Phenomena in Cancer Research: From Cancer Evolution to Cancer Treatment

Author: Raluca Eftimie

Publisher: World Scientific Publishing Europe Limited

Published: 2024-06-14

Total Pages: 0

ISBN-13: 9781800614376

DOWNLOAD EBOOK

Cancer development and progression is the result of biological phenomena that occur across multiple temporal and spatial scales. Recent years have seen a flurry of multi-scale mathematical models developed to generate and test new biological hypotheses related to cancer development, progression, and various treatment approaches. This led to the development of new computational and analytical approaches aimed at investigating these multiscale models.This review volume summarises some of the current state of the art related to the modelling, experimental investigation and data assimilation for multiscale phenomena during cancer development, evolution and treatment, as well as computational and analytical investigation of the multi-scale models developed to reproduce the biological phenomena. The book also identifies the experimental and theoretical open problems that will have to be addressed in the near future in order to advance this field. Modelling and Computational Approaches for Multi-scale Phenomena in Cancer Research is an excellent resource for both early career and advanced researchers.


Book Synopsis Modelling and Computational Approaches for Multi-Scale Phenomena in Cancer Research: From Cancer Evolution to Cancer Treatment by : Raluca Eftimie

Download or read book Modelling and Computational Approaches for Multi-Scale Phenomena in Cancer Research: From Cancer Evolution to Cancer Treatment written by Raluca Eftimie and published by World Scientific Publishing Europe Limited. This book was released on 2024-06-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer development and progression is the result of biological phenomena that occur across multiple temporal and spatial scales. Recent years have seen a flurry of multi-scale mathematical models developed to generate and test new biological hypotheses related to cancer development, progression, and various treatment approaches. This led to the development of new computational and analytical approaches aimed at investigating these multiscale models.This review volume summarises some of the current state of the art related to the modelling, experimental investigation and data assimilation for multiscale phenomena during cancer development, evolution and treatment, as well as computational and analytical investigation of the multi-scale models developed to reproduce the biological phenomena. The book also identifies the experimental and theoretical open problems that will have to be addressed in the near future in order to advance this field. Modelling and Computational Approaches for Multi-scale Phenomena in Cancer Research is an excellent resource for both early career and advanced researchers.


Multiscale Modelling in Biomedical Engineering

Multiscale Modelling in Biomedical Engineering

Author: Dimitrios I. Fotiadis

Publisher: John Wiley & Sons

Published: 2023-05-05

Total Pages: 404

ISBN-13: 1119517354

DOWNLOAD EBOOK

Multiscale Modelling in Biomedical Engineering Discover how multiscale modeling can enhance patient treatment and outcomes In Multiscale Modelling in Biomedical Engineering, an accomplished team of biomedical professionals delivers a robust treatment of the foundation and background of a general computational methodology for multi-scale modeling. The authors demonstrate how this methodology can be applied to various fields of biomedicine, with a particular focus on orthopedics and cardiovascular medicine. The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems. Multiscale Modelling in Biomedical Engineering offers readers experiments and exercises to illustrate and implement the concepts contained within. Readers will also benefit from the inclusion of: A thorough introduction to systems biology and multi-scale modeling, including a survey of various multi-scale methods and approaches and analyses of their application in systems biology Comprehensive explorations of biomedical imaging and nanoscale modeling at the molecular, cell, tissue, and organ levels Practical discussions of the mechanotransduction perspective, including recent progress and likely future challenges In-depth examinations of risk prediction in patients using big data analytics and data mining Perfect for undergraduate and graduate students of bioengineering, biomechanics, biomedical engineering, and medicine, Multiscale Modelling in Biomedical Engineering will also earn a place in the libraries of industry professional and researchers seeking a one-stop reference to the basic engineering principles of biological systems.


Book Synopsis Multiscale Modelling in Biomedical Engineering by : Dimitrios I. Fotiadis

Download or read book Multiscale Modelling in Biomedical Engineering written by Dimitrios I. Fotiadis and published by John Wiley & Sons. This book was released on 2023-05-05 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Modelling in Biomedical Engineering Discover how multiscale modeling can enhance patient treatment and outcomes In Multiscale Modelling in Biomedical Engineering, an accomplished team of biomedical professionals delivers a robust treatment of the foundation and background of a general computational methodology for multi-scale modeling. The authors demonstrate how this methodology can be applied to various fields of biomedicine, with a particular focus on orthopedics and cardiovascular medicine. The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems. Multiscale Modelling in Biomedical Engineering offers readers experiments and exercises to illustrate and implement the concepts contained within. Readers will also benefit from the inclusion of: A thorough introduction to systems biology and multi-scale modeling, including a survey of various multi-scale methods and approaches and analyses of their application in systems biology Comprehensive explorations of biomedical imaging and nanoscale modeling at the molecular, cell, tissue, and organ levels Practical discussions of the mechanotransduction perspective, including recent progress and likely future challenges In-depth examinations of risk prediction in patients using big data analytics and data mining Perfect for undergraduate and graduate students of bioengineering, biomechanics, biomedical engineering, and medicine, Multiscale Modelling in Biomedical Engineering will also earn a place in the libraries of industry professional and researchers seeking a one-stop reference to the basic engineering principles of biological systems.


Leveraging Distortions

Leveraging Distortions

Author: Collin Rice

Publisher: MIT Press

Published: 2021-08-17

Total Pages: 367

ISBN-13: 0262542617

DOWNLOAD EBOOK

An examination of how scientists deliberately and justifiably use pervasive distortions of relevant features to explain and understand natural phenomena. A fundamental rule of logic is that in order for an argument to provide good reasons for its conclusion, the premises of the argument must be true. In this book, Collin Rice shows how the practice of science repeatedly, pervasively, and deliberately violates this principle. Rice argues that scientists strategically use distortions that misrepresent relevant features of natural phenomena in order to explain and understand--and that they use these distortions deliberately and justifiably in order to discover truths that would be otherwise inaccessible. Countering the standard emphasis on causation, accurate representation, and decomposition of science into its accurate and inaccurate parts, Rice shows that science's epistemic achievements can still be factive despite their being produced through the use of holistically distorted scientific representations. Indeed, he argues, this distortion is one of the most widely employed and fruitful tools used in scientific theorizing. Marshalling a range of case studies, Rice contends that many explanations in science are noncausal, and he presents an alternate view of explanation that captures the variety of noncausal explanations found across the sciences. He proposes an alternative holistic distortion view of idealized models, connecting it to physicists' concept of a universality class; shows how universality classes can overcome some of the challenges of multiscale modeling; and offers accounts of explanation, idealization, modeling, and understanding.


Book Synopsis Leveraging Distortions by : Collin Rice

Download or read book Leveraging Distortions written by Collin Rice and published by MIT Press. This book was released on 2021-08-17 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: An examination of how scientists deliberately and justifiably use pervasive distortions of relevant features to explain and understand natural phenomena. A fundamental rule of logic is that in order for an argument to provide good reasons for its conclusion, the premises of the argument must be true. In this book, Collin Rice shows how the practice of science repeatedly, pervasively, and deliberately violates this principle. Rice argues that scientists strategically use distortions that misrepresent relevant features of natural phenomena in order to explain and understand--and that they use these distortions deliberately and justifiably in order to discover truths that would be otherwise inaccessible. Countering the standard emphasis on causation, accurate representation, and decomposition of science into its accurate and inaccurate parts, Rice shows that science's epistemic achievements can still be factive despite their being produced through the use of holistically distorted scientific representations. Indeed, he argues, this distortion is one of the most widely employed and fruitful tools used in scientific theorizing. Marshalling a range of case studies, Rice contends that many explanations in science are noncausal, and he presents an alternate view of explanation that captures the variety of noncausal explanations found across the sciences. He proposes an alternative holistic distortion view of idealized models, connecting it to physicists' concept of a universality class; shows how universality classes can overcome some of the challenges of multiscale modeling; and offers accounts of explanation, idealization, modeling, and understanding.


Scientific Computing

Scientific Computing

Author: John A. Trangenstein

Publisher: Springer

Published: 2018-05-14

Total Pages: 600

ISBN-13: 3319691074

DOWNLOAD EBOOK

This is the second of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses more advanced topics than volume one, and is largely not a prerequisite for volume three. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 49 examples, 110 exercises, 66 algorithms, 24 interactive JavaScript programs, 77 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as nonlinear optimization or iterative linear algebra.


Book Synopsis Scientific Computing by : John A. Trangenstein

Download or read book Scientific Computing written by John A. Trangenstein and published by Springer. This book was released on 2018-05-14 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses more advanced topics than volume one, and is largely not a prerequisite for volume three. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 49 examples, 110 exercises, 66 algorithms, 24 interactive JavaScript programs, 77 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as nonlinear optimization or iterative linear algebra.