Multiscale Problems in Science and Technology

Multiscale Problems in Science and Technology

Author: Nenad Antonic

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 322

ISBN-13: 3642562000

DOWNLOAD EBOOK

The International conference on Multiscale problems in science and technol ogy; Challenges to mathematical analysis and applications brought together mathematicians working on multiscale techniques (homogenisation, singular perturbation) and specialists from applied sciences who use these techniques. Our idea was that mathematicians could contribute to solving problems in the emerging applied disciplines usually overlooked by them and that specialists from applied sciences could pose new challenges for multiscale problems. Numerous problems in natural sciences contain multiple scales: flows in complex heterogeneous media, many particles systems, composite media, etc. Mathematically, we are led to study of singular homogenisation limits and the procedure is called upscaling or homogenisation. The processes to be up scaled are usually described by differential equations. For simple cases, when the differential equation is linear and the heterogeneities are periodic some progress has been made. However, most natural phenomena are described by nonlinear differential equations in a random nonhomogeneous medium and, despite an intensive development in recent years, there are many open problems. The objective of the conference was to bring together leading special ists from Europe and the United States and to discuss new challenges in this quickly developing field. Topics of the conference were Nonlinear Partial Differential Equations and Applied Analysis, with direct applications to the modeling in Material Sciences, Petroleum Engineering and Hydrodynamics.


Book Synopsis Multiscale Problems in Science and Technology by : Nenad Antonic

Download or read book Multiscale Problems in Science and Technology written by Nenad Antonic and published by Springer Science & Business Media. This book was released on 2011-06-27 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International conference on Multiscale problems in science and technol ogy; Challenges to mathematical analysis and applications brought together mathematicians working on multiscale techniques (homogenisation, singular perturbation) and specialists from applied sciences who use these techniques. Our idea was that mathematicians could contribute to solving problems in the emerging applied disciplines usually overlooked by them and that specialists from applied sciences could pose new challenges for multiscale problems. Numerous problems in natural sciences contain multiple scales: flows in complex heterogeneous media, many particles systems, composite media, etc. Mathematically, we are led to study of singular homogenisation limits and the procedure is called upscaling or homogenisation. The processes to be up scaled are usually described by differential equations. For simple cases, when the differential equation is linear and the heterogeneities are periodic some progress has been made. However, most natural phenomena are described by nonlinear differential equations in a random nonhomogeneous medium and, despite an intensive development in recent years, there are many open problems. The objective of the conference was to bring together leading special ists from Europe and the United States and to discuss new challenges in this quickly developing field. Topics of the conference were Nonlinear Partial Differential Equations and Applied Analysis, with direct applications to the modeling in Material Sciences, Petroleum Engineering and Hydrodynamics.


Multiscale Problems in Science and Technology

Multiscale Problems in Science and Technology

Author: Nenad Antoni'c

Publisher:

Published: 2002

Total Pages: 306

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Multiscale Problems in Science and Technology by : Nenad Antoni'c

Download or read book Multiscale Problems in Science and Technology written by Nenad Antoni'c and published by . This book was released on 2002 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Multiscale Modeling and Simulation in Science

Multiscale Modeling and Simulation in Science

Author: Björn Engquist

Publisher: Springer Science & Business Media

Published: 2009-02-11

Total Pages: 332

ISBN-13: 3540888578

DOWNLOAD EBOOK

Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.


Book Synopsis Multiscale Modeling and Simulation in Science by : Björn Engquist

Download or read book Multiscale Modeling and Simulation in Science written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many others in physics, chemistry and biology is that an attempt to represent all scales will lead to an enormous computational problem with unacceptably long computation times and large memory requirements. On the other hand, if the discretization at a coarse level ignoresthe?nescale informationthenthesolutionwillnotbephysicallymeaningful. The in?uence of the ?ne scales must be incorporated into the model. This volume is the result of a Summer School on Multiscale Modeling and S- ulation in Science held at Boso ¤n, Lidingo ¤ outside Stockholm, Sweden, in June 2007. Sixty PhD students from applied mathematics, the sciences and engineering parti- pated in the summer school.


Multiscale Methods in Science and Engineering

Multiscale Methods in Science and Engineering

Author: Björn Engquist

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 300

ISBN-13: 3540264442

DOWNLOAD EBOOK

Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.


Book Synopsis Multiscale Methods in Science and Engineering by : Björn Engquist

Download or read book Multiscale Methods in Science and Engineering written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.


Multicomponent and Multiscale Systems

Multicomponent and Multiscale Systems

Author: Juergen Geiser

Publisher: Springer

Published: 2015-08-21

Total Pages: 325

ISBN-13: 3319151177

DOWNLOAD EBOOK

This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and applied areas.


Book Synopsis Multicomponent and Multiscale Systems by : Juergen Geiser

Download or read book Multicomponent and Multiscale Systems written by Juergen Geiser and published by Springer. This book was released on 2015-08-21 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and applied areas.


GPU Solutions to Multi-scale Problems in Science and Engineering

GPU Solutions to Multi-scale Problems in Science and Engineering

Author: David A. Yuen

Publisher: Springer Science & Business Media

Published: 2013-01-09

Total Pages: 677

ISBN-13: 3642164056

DOWNLOAD EBOOK

This book covers the new topic of GPU computing with many applications involved, taken from diverse fields such as networking, seismology, fluid mechanics, nano-materials, data-mining , earthquakes ,mantle convection, visualization. It will show the public why GPU computing is important and easy to use. It will offer a reason why GPU computing is useful and how to implement codes in an everyday situation.


Book Synopsis GPU Solutions to Multi-scale Problems in Science and Engineering by : David A. Yuen

Download or read book GPU Solutions to Multi-scale Problems in Science and Engineering written by David A. Yuen and published by Springer Science & Business Media. This book was released on 2013-01-09 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the new topic of GPU computing with many applications involved, taken from diverse fields such as networking, seismology, fluid mechanics, nano-materials, data-mining , earthquakes ,mantle convection, visualization. It will show the public why GPU computing is important and easy to use. It will offer a reason why GPU computing is useful and how to implement codes in an everyday situation.


Numerical Analysis of Multiscale Problems

Numerical Analysis of Multiscale Problems

Author: Ivan G. Graham

Publisher: Springer

Published: 2014-02-22

Total Pages: 0

ISBN-13: 9783642431241

DOWNLOAD EBOOK

The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.


Book Synopsis Numerical Analysis of Multiscale Problems by : Ivan G. Graham

Download or read book Numerical Analysis of Multiscale Problems written by Ivan G. Graham and published by Springer. This book was released on 2014-02-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.


Numerical Methods and Analysis of Multiscale Problems

Numerical Methods and Analysis of Multiscale Problems

Author: Alexandre L. Madureira

Publisher: Springer

Published: 2017-02-15

Total Pages: 123

ISBN-13: 3319508660

DOWNLOAD EBOOK

This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.


Book Synopsis Numerical Methods and Analysis of Multiscale Problems by : Alexandre L. Madureira

Download or read book Numerical Methods and Analysis of Multiscale Problems written by Alexandre L. Madureira and published by Springer. This book was released on 2017-02-15 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.


IUTAM Symposium on Multiscale Problems in Multibody System Contacts

IUTAM Symposium on Multiscale Problems in Multibody System Contacts

Author: Peter Eberhard

Publisher: Springer Science & Business Media

Published: 2007-05-26

Total Pages: 349

ISBN-13: 1402059817

DOWNLOAD EBOOK

The investigation of multiscale problems in multibody system contacts is an interesting and timely topic which has been the subject of intensive research. This IUTAM Symposium facilitated discussions between researchers active in the field. This proceedings volume summarizes contributions of many authors active in the field and gives insight in very different areas of this fascinating research. It reviews the state-of-the-art and identifies future hot topics.


Book Synopsis IUTAM Symposium on Multiscale Problems in Multibody System Contacts by : Peter Eberhard

Download or read book IUTAM Symposium on Multiscale Problems in Multibody System Contacts written by Peter Eberhard and published by Springer Science & Business Media. This book was released on 2007-05-26 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: The investigation of multiscale problems in multibody system contacts is an interesting and timely topic which has been the subject of intensive research. This IUTAM Symposium facilitated discussions between researchers active in the field. This proceedings volume summarizes contributions of many authors active in the field and gives insight in very different areas of this fascinating research. It reviews the state-of-the-art and identifies future hot topics.


Multiscale Modeling for Process Safety Applications

Multiscale Modeling for Process Safety Applications

Author: Arnab Chakrabarty

Publisher: Butterworth-Heinemann

Published: 2015-11-29

Total Pages: 446

ISBN-13: 0123972833

DOWNLOAD EBOOK

Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader


Book Synopsis Multiscale Modeling for Process Safety Applications by : Arnab Chakrabarty

Download or read book Multiscale Modeling for Process Safety Applications written by Arnab Chakrabarty and published by Butterworth-Heinemann. This book was released on 2015-11-29 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader