Nanobiotechnology of Biomimetic Membranes

Nanobiotechnology of Biomimetic Membranes

Author: Donald Martin

Publisher: Springer Science & Business Media

Published: 2007-12-26

Total Pages: 183

ISBN-13: 0387377409

DOWNLOAD EBOOK

This book describes the current state of research and development in biomimetic membranes for nanobiotechnology applications. It takes an international perspective on the issue of developing biotechnology applications from an understanding of the biomimetic membrane at the nanoscale. The success of these applications relies on a good understanding of the interaction and incorporation of macromolecules in membranes and the fundamental properties of the membrane itself.


Book Synopsis Nanobiotechnology of Biomimetic Membranes by : Donald Martin

Download or read book Nanobiotechnology of Biomimetic Membranes written by Donald Martin and published by Springer Science & Business Media. This book was released on 2007-12-26 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the current state of research and development in biomimetic membranes for nanobiotechnology applications. It takes an international perspective on the issue of developing biotechnology applications from an understanding of the biomimetic membrane at the nanoscale. The success of these applications relies on a good understanding of the interaction and incorporation of macromolecules in membranes and the fundamental properties of the membrane itself.


Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization

Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization

Author: Fatma N. Kök

Publisher: Springer

Published: 2019-04-16

Total Pages: 306

ISBN-13: 3030115968

DOWNLOAD EBOOK

This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development. Provides fundamental knowledge on biomimetic lipid membranes; Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques; Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques; Describes the integration of biomimetic membranes with current top-notch tools and platforms; Examines applications in medicine, pharmaceutical industry, and environmental monitoring.


Book Synopsis Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization by : Fatma N. Kök

Download or read book Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization written by Fatma N. Kök and published by Springer. This book was released on 2019-04-16 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles the fundamentals, applications and viable product strategies of biomimetic lipid membranes into a single, comprehensive source. It broadens its perspective to interdisciplinary realms incorporating medicine, biology, physics, chemistry, materials science, as well as engineering and pharmacy at large. The book guides readers from membrane structure and models to biophysical chemistry and functionalization of membrane surfaces. It then takes the reader through a myriad of surface-sensitive techniques before delving into cutting-edge applications that could help inspire new research directions. With more than half the world's drugs and various toxins targeting these crucial structures, the book addresses a topic of major importance in the field of medicine, particularly biosensor design, diagnostic tool development, vaccine formulation, micro/nano-array systems, and drug screening/development. Provides fundamental knowledge on biomimetic lipid membranes; Addresses some of biomimetic membrane types, preparation methods, properties and characterization techniques; Explains state-of-art technological developments that incorporate microfluidic systems, array technologies, lab-on-a-chip-tools, biosensing, and bioprinting techniques; Describes the integration of biomimetic membranes with current top-notch tools and platforms; Examines applications in medicine, pharmaceutical industry, and environmental monitoring.


Biomimetic Membranes for Sensor and Separation Applications

Biomimetic Membranes for Sensor and Separation Applications

Author: Claus Hélix-Nielsen

Publisher: Springer Science & Business Media

Published: 2012-01-02

Total Pages: 303

ISBN-13: 9400721838

DOWNLOAD EBOOK

This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.


Book Synopsis Biomimetic Membranes for Sensor and Separation Applications by : Claus Hélix-Nielsen

Download or read book Biomimetic Membranes for Sensor and Separation Applications written by Claus Hélix-Nielsen and published by Springer Science & Business Media. This book was released on 2012-01-02 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.


Biomimetic Membranes for Sensor and Separation Applications

Biomimetic Membranes for Sensor and Separation Applications

Author: Claus Hélix-Nielsen

Publisher: Springer

Published: 2013-01-02

Total Pages: 292

ISBN-13: 9789400721852

DOWNLOAD EBOOK

This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.


Book Synopsis Biomimetic Membranes for Sensor and Separation Applications by : Claus Hélix-Nielsen

Download or read book Biomimetic Membranes for Sensor and Separation Applications written by Claus Hélix-Nielsen and published by Springer. This book was released on 2013-01-02 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.


Membranes

Membranes

Author: Raz Jelinek

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-05-07

Total Pages: 314

ISBN-13: 3110453908

DOWNLOAD EBOOK

Describes the properties of cellular membranes and their relationship with fundamental biological processes. This book provides insight on the chemistry, structures, model systems, and techniques employed for studying membrane properties and processes. A major focus is on the prominence of membranes in diverse physiological processes and disease, as well as applications of membranes and biomimetic membrane systems in varied disciplines. The book aims to illuminate the significance and beauty of membrane science, and serve both as an entry point for scholars wishing to embark on membrane research, as well as scientists already working in the field.


Book Synopsis Membranes by : Raz Jelinek

Download or read book Membranes written by Raz Jelinek and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-05-07 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the properties of cellular membranes and their relationship with fundamental biological processes. This book provides insight on the chemistry, structures, model systems, and techniques employed for studying membrane properties and processes. A major focus is on the prominence of membranes in diverse physiological processes and disease, as well as applications of membranes and biomimetic membrane systems in varied disciplines. The book aims to illuminate the significance and beauty of membrane science, and serve both as an entry point for scholars wishing to embark on membrane research, as well as scientists already working in the field.


Interfacial Phenomena on Biological Membranes

Interfacial Phenomena on Biological Membranes

Author: Manoranjan Arakha

Publisher: Springer

Published: 2018-01-10

Total Pages: 151

ISBN-13: 3319733265

DOWNLOAD EBOOK

This book focuses on important interfacial phenomena, such as interfacial potential and interfacial multi-functionality, responsible for determining the fate of nanoparticles inside the biological milieu. Additionally, this book explores the role of surface defects in photocatalytic nanoparticles in defining the nanoparticle interaction to biological membrane and cytotoxic propensity.The authors describe the interfacial assembly of peptide/protein on conformational/functional dynamics of the peptide/protein, which may be adopted as an approach to moderate the protein misfolding diseases.


Book Synopsis Interfacial Phenomena on Biological Membranes by : Manoranjan Arakha

Download or read book Interfacial Phenomena on Biological Membranes written by Manoranjan Arakha and published by Springer. This book was released on 2018-01-10 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on important interfacial phenomena, such as interfacial potential and interfacial multi-functionality, responsible for determining the fate of nanoparticles inside the biological milieu. Additionally, this book explores the role of surface defects in photocatalytic nanoparticles in defining the nanoparticle interaction to biological membrane and cytotoxic propensity.The authors describe the interfacial assembly of peptide/protein on conformational/functional dynamics of the peptide/protein, which may be adopted as an approach to moderate the protein misfolding diseases.


Plenty of Room for Biology at the Bottom

Plenty of Room for Biology at the Bottom

Author: Ehud Gazit

Publisher: Imperial College Press

Published: 2007

Total Pages: 198

ISBN-13: 1860948197

DOWNLOAD EBOOK

Written by a leading nanobiologist actively involved at the forefront of the field both as a researcher and an educator, this book takes the reader from the fundamentals of nanobiology to the most advanced applications. The book is written in such a way as to be accessible to biologists and chemists with no background in nanotechnology. It is reader-friendly and will appeal to a wide audience not only in academia but also in the industry and anyone interested in learning more about nanobiotechnology. The book includes a glossary and a selected list of companies actively involved in nanobiotechnology and will be an important reference for those interested in the application aspects of the field.


Book Synopsis Plenty of Room for Biology at the Bottom by : Ehud Gazit

Download or read book Plenty of Room for Biology at the Bottom written by Ehud Gazit and published by Imperial College Press. This book was released on 2007 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a leading nanobiologist actively involved at the forefront of the field both as a researcher and an educator, this book takes the reader from the fundamentals of nanobiology to the most advanced applications. The book is written in such a way as to be accessible to biologists and chemists with no background in nanotechnology. It is reader-friendly and will appeal to a wide audience not only in academia but also in the industry and anyone interested in learning more about nanobiotechnology. The book includes a glossary and a selected list of companies actively involved in nanobiotechnology and will be an important reference for those interested in the application aspects of the field.


The Nanobiotechnology Handbook

The Nanobiotechnology Handbook

Author: Yubing Xie

Publisher: CRC Press

Published: 2012-11-16

Total Pages: 692

ISBN-13: 1439838704

DOWNLOAD EBOOK

A thorough overview of nanobiotechnology and its place in advances in applied science and engineering, The Nanobiotechnology Handbook combines contributions from physics, bioorganic and bioinorganic chemistry, molecular and cellular biology, materials science, and medicine as well as from mechanical, electrical, chemical, and biomedical engineering


Book Synopsis The Nanobiotechnology Handbook by : Yubing Xie

Download or read book The Nanobiotechnology Handbook written by Yubing Xie and published by CRC Press. This book was released on 2012-11-16 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough overview of nanobiotechnology and its place in advances in applied science and engineering, The Nanobiotechnology Handbook combines contributions from physics, bioorganic and bioinorganic chemistry, molecular and cellular biology, materials science, and medicine as well as from mechanical, electrical, chemical, and biomedical engineering


Biomimetic Nanotechnology

Biomimetic Nanotechnology

Author: Anja Mueller

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-11-20

Total Pages: 114

ISBN-13: 3110417529

DOWNLOAD EBOOK

The human body includes very effective and efficient technology, such as light receptors (eyes), chemical receptors (tongue and nose), and movement (muscles). This book explains how these functions work on the molecular level and then discusses nanotechnology that uses the same structure-function relationships.


Book Synopsis Biomimetic Nanotechnology by : Anja Mueller

Download or read book Biomimetic Nanotechnology written by Anja Mueller and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-11-20 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The human body includes very effective and efficient technology, such as light receptors (eyes), chemical receptors (tongue and nose), and movement (muscles). This book explains how these functions work on the molecular level and then discusses nanotechnology that uses the same structure-function relationships.


Biomimetic Nanotechnology

Biomimetic Nanotechnology

Author: Anja Mueller

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-04-03

Total Pages: 142

ISBN-13: 3110779196

DOWNLOAD EBOOK

This is an interdisciplinary book for biomimetic nanotechnology, that correlates the biology on the molecular scale with nanotechnology mimicking human senses and movement. The introduction provides the background in life science, chemistry, material science, and engineering needed to understand sensors and movement on the molecular level. The chapters discuss human movement, vision, smell and taste, hearing, and touch. Each chapter explains the sense or movement on the molecular level, then discusses nanotechnology that uses the human molecules or mimics the function of the human sense and movement on the nanoscale. This is an excellent book for senior undergraduates and graduate students in the life sciences, chemistry, material sciences, and engineering. It will also appeal to any reader with an interest in life sciences and nanotechnology.


Book Synopsis Biomimetic Nanotechnology by : Anja Mueller

Download or read book Biomimetic Nanotechnology written by Anja Mueller and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-04-03 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an interdisciplinary book for biomimetic nanotechnology, that correlates the biology on the molecular scale with nanotechnology mimicking human senses and movement. The introduction provides the background in life science, chemistry, material science, and engineering needed to understand sensors and movement on the molecular level. The chapters discuss human movement, vision, smell and taste, hearing, and touch. Each chapter explains the sense or movement on the molecular level, then discusses nanotechnology that uses the human molecules or mimics the function of the human sense and movement on the nanoscale. This is an excellent book for senior undergraduates and graduate students in the life sciences, chemistry, material sciences, and engineering. It will also appeal to any reader with an interest in life sciences and nanotechnology.