Nanoscale Semiconductor Memories

Nanoscale Semiconductor Memories

Author: Santosh K. Kurinec

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 448

ISBN-13: 1466560614

DOWNLOAD EBOOK

Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.


Book Synopsis Nanoscale Semiconductor Memories by : Santosh K. Kurinec

Download or read book Nanoscale Semiconductor Memories written by Santosh K. Kurinec and published by CRC Press. This book was released on 2017-07-28 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.


Nanoscale Memory Repair

Nanoscale Memory Repair

Author: Masashi Horiguchi

Publisher: Springer Science & Business Media

Published: 2011-01-11

Total Pages: 221

ISBN-13: 1441979581

DOWNLOAD EBOOK

Yield and reliability of memories have degraded with device and voltage scaling in the nano-scale era, due to ever-increasing hard/soft errors and device parameter variations. This book systematically describes these yield and reliability issues in terms of mathematics and engineering, as well as an array of repair techniques, based on the authors’ long careers in developing memories and low-voltage CMOS circuits. Nanoscale Memory Repair gives a detailed explanation of the various yield models and calculations, as well as various, practical logic and circuits that are critical for higher yield and reliability.


Book Synopsis Nanoscale Memory Repair by : Masashi Horiguchi

Download or read book Nanoscale Memory Repair written by Masashi Horiguchi and published by Springer Science & Business Media. This book was released on 2011-01-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Yield and reliability of memories have degraded with device and voltage scaling in the nano-scale era, due to ever-increasing hard/soft errors and device parameter variations. This book systematically describes these yield and reliability issues in terms of mathematics and engineering, as well as an array of repair techniques, based on the authors’ long careers in developing memories and low-voltage CMOS circuits. Nanoscale Memory Repair gives a detailed explanation of the various yield models and calculations, as well as various, practical logic and circuits that are critical for higher yield and reliability.


Extreme Statistics in Nanoscale Memory Design

Extreme Statistics in Nanoscale Memory Design

Author: Amith Singhee

Publisher: Springer Science & Business Media

Published: 2010-09-09

Total Pages: 254

ISBN-13: 1441966064

DOWNLOAD EBOOK

Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5–6s (0.


Book Synopsis Extreme Statistics in Nanoscale Memory Design by : Amith Singhee

Download or read book Extreme Statistics in Nanoscale Memory Design written by Amith Singhee and published by Springer Science & Business Media. This book was released on 2010-09-09 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5–6s (0.


Embedded Memories for Nano-Scale VLSIs

Embedded Memories for Nano-Scale VLSIs

Author: Kevin Zhang

Publisher: Springer Science & Business Media

Published: 2009-04-21

Total Pages: 390

ISBN-13: 0387884971

DOWNLOAD EBOOK

Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.


Book Synopsis Embedded Memories for Nano-Scale VLSIs by : Kevin Zhang

Download or read book Embedded Memories for Nano-Scale VLSIs written by Kevin Zhang and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.


Noise in Nanoscale Semiconductor Devices

Noise in Nanoscale Semiconductor Devices

Author: Tibor Grasser

Publisher: Springer Nature

Published: 2020-04-26

Total Pages: 724

ISBN-13: 3030375005

DOWNLOAD EBOOK

This book summarizes the state-of-the-art, regarding noise in nanometer semiconductor devices. Readers will benefit from this leading-edge research, aimed at increasing reliability based on physical microscopic models. Authors discuss the most recent developments in the understanding of point defects, e.g. via ab initio calculations or intricate measurements, which have paved the way to more physics-based noise models which are applicable to a wider range of materials and features, e.g. III-V materials, 2D materials, and multi-state defects. Describes the state-of-the-art, regarding noise in nanometer semiconductor devices; Enables readers to design more reliable semiconductor devices; Offers the most up-to-date information on point defects, based on physical microscopic models.


Book Synopsis Noise in Nanoscale Semiconductor Devices by : Tibor Grasser

Download or read book Noise in Nanoscale Semiconductor Devices written by Tibor Grasser and published by Springer Nature. This book was released on 2020-04-26 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state-of-the-art, regarding noise in nanometer semiconductor devices. Readers will benefit from this leading-edge research, aimed at increasing reliability based on physical microscopic models. Authors discuss the most recent developments in the understanding of point defects, e.g. via ab initio calculations or intricate measurements, which have paved the way to more physics-based noise models which are applicable to a wider range of materials and features, e.g. III-V materials, 2D materials, and multi-state defects. Describes the state-of-the-art, regarding noise in nanometer semiconductor devices; Enables readers to design more reliable semiconductor devices; Offers the most up-to-date information on point defects, based on physical microscopic models.


Extreme Statistics in Nanoscale Memory Design

Extreme Statistics in Nanoscale Memory Design

Author: Amith Singhee

Publisher: Springer

Published: 2010-09-17

Total Pages: 246

ISBN-13: 9781441966056

DOWNLOAD EBOOK

Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5–6s (0.


Book Synopsis Extreme Statistics in Nanoscale Memory Design by : Amith Singhee

Download or read book Extreme Statistics in Nanoscale Memory Design written by Amith Singhee and published by Springer. This book was released on 2010-09-17 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5–6s (0.


Nanoscale Semiconductors

Nanoscale Semiconductors

Author: Balwinder Raj

Publisher: CRC Press

Published: 2022-08-30

Total Pages: 259

ISBN-13: 1000637506

DOWNLOAD EBOOK

This reference text discusses conduction mechanism, structure construction, operation, performance evaluation and applications of nanoscale semiconductor materials and devices in VLSI circuits design. The text explains nano materials, devices, analysis of its design parameters to meet the sub-nano-regime challenges for CMOS devices. It discusses important topics including memory design and testing, fin field-effect transistor (FinFET), tunnel field-effect transistor (TFET) for sensors design, carbon nanotube field-effect transistor (CNTFET) for memory design, nanowire and nanoribbons, nano devices based low-power-circuit design, and microelectromechanical systems (MEMS) design. The book discusses nanoscale semiconductor materials, device models, and circuit design covers nanoscale semiconductor device structures and modeling discusses novel nano-semiconductor devices such as FinFET, CNTFET, and Nanowire covers power dissipation and reduction techniques Discussing innovative nanoscale semiconductor device structures and modeling, this text will be useful for graduate students, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, nanoscience, and nanotechnology. It covers nano devices based low-power-circuit design, nanoscale devices based digital VLSI circuits, and novel devices based analog VLSI circuits design.


Book Synopsis Nanoscale Semiconductors by : Balwinder Raj

Download or read book Nanoscale Semiconductors written by Balwinder Raj and published by CRC Press. This book was released on 2022-08-30 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text discusses conduction mechanism, structure construction, operation, performance evaluation and applications of nanoscale semiconductor materials and devices in VLSI circuits design. The text explains nano materials, devices, analysis of its design parameters to meet the sub-nano-regime challenges for CMOS devices. It discusses important topics including memory design and testing, fin field-effect transistor (FinFET), tunnel field-effect transistor (TFET) for sensors design, carbon nanotube field-effect transistor (CNTFET) for memory design, nanowire and nanoribbons, nano devices based low-power-circuit design, and microelectromechanical systems (MEMS) design. The book discusses nanoscale semiconductor materials, device models, and circuit design covers nanoscale semiconductor device structures and modeling discusses novel nano-semiconductor devices such as FinFET, CNTFET, and Nanowire covers power dissipation and reduction techniques Discussing innovative nanoscale semiconductor device structures and modeling, this text will be useful for graduate students, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, nanoscience, and nanotechnology. It covers nano devices based low-power-circuit design, nanoscale devices based digital VLSI circuits, and novel devices based analog VLSI circuits design.


Semiconductor Physics

Semiconductor Physics

Author: Sandip Tiwari

Publisher: Oxford University Press, USA

Published: 2020

Total Pages: 832

ISBN-13: 019875986X

DOWNLOAD EBOOK

This text brings together traditional solid-state approaches from the 20th century with developments of the early part of the 21st century, to reach an understanding of semiconductor physics in its multifaceted forms. It reveals how an understanding of what happens within the material can lead to insights into what happens in its use.


Book Synopsis Semiconductor Physics by : Sandip Tiwari

Download or read book Semiconductor Physics written by Sandip Tiwari and published by Oxford University Press, USA. This book was released on 2020 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text brings together traditional solid-state approaches from the 20th century with developments of the early part of the 21st century, to reach an understanding of semiconductor physics in its multifaceted forms. It reveals how an understanding of what happens within the material can lead to insights into what happens in its use.


Semiconductor Memories and Systems

Semiconductor Memories and Systems

Author: Andrea Redaelli

Publisher: Woodhead Publishing

Published: 2022-06-07

Total Pages: 364

ISBN-13: 0128209461

DOWNLOAD EBOOK

Semiconductor Memories and Systems provides a comprehensive overview of the current state of semiconductor memory at the technology and system levels. After an introduction on market trends and memory applications, the book focuses on mainstream technologies, illustrating their current status, challenges and opportunities, with special attention paid to scalability paths. Technologies discussed include static random access memory (SRAM), dynamic random access memory (DRAM), non-volatile memory (NVM), and NAND flash memory. Embedded memory and requirements and system level needs for storage class memory are also addressed. Each chapter covers physical operating mechanisms, fabrication technologies, and the main challenges to scalability. Finally, the work reviews the emerging trends for storage class memory, mainly focusing on the advantages and opportunities of phase change based memory technologies. Features contributions from experts from leading companies in semiconductor memory Discusses physical operating mechanisms, fabrication technologies and paths to scalability for current and emerging semiconductor memories Reviews primary memory technologies, including SRAM, DRAM, NVM and NAND flash memory Includes emerging storage class memory technologies such as phase change memory


Book Synopsis Semiconductor Memories and Systems by : Andrea Redaelli

Download or read book Semiconductor Memories and Systems written by Andrea Redaelli and published by Woodhead Publishing. This book was released on 2022-06-07 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Memories and Systems provides a comprehensive overview of the current state of semiconductor memory at the technology and system levels. After an introduction on market trends and memory applications, the book focuses on mainstream technologies, illustrating their current status, challenges and opportunities, with special attention paid to scalability paths. Technologies discussed include static random access memory (SRAM), dynamic random access memory (DRAM), non-volatile memory (NVM), and NAND flash memory. Embedded memory and requirements and system level needs for storage class memory are also addressed. Each chapter covers physical operating mechanisms, fabrication technologies, and the main challenges to scalability. Finally, the work reviews the emerging trends for storage class memory, mainly focusing on the advantages and opportunities of phase change based memory technologies. Features contributions from experts from leading companies in semiconductor memory Discusses physical operating mechanisms, fabrication technologies and paths to scalability for current and emerging semiconductor memories Reviews primary memory technologies, including SRAM, DRAM, NVM and NAND flash memory Includes emerging storage class memory technologies such as phase change memory


Semiconductor Memories

Semiconductor Memories

Author: Ashok K. Sharma

Publisher: Wiley-IEEE Press

Published: 2002-09-10

Total Pages: 480

ISBN-13: 9780780310001

DOWNLOAD EBOOK

Semiconductor Memories provides in-depth coverage in the areas of design for testing, fault tolerance, failure modes and mechanisms, and screening and qualification methods including. * Memory cell structures and fabrication technologies. * Application-specific memories and architectures. * Memory design, fault modeling and test algorithms, limitations, and trade-offs. * Space environment, radiation hardening process and design techniques, and radiation testing. * Memory stacks and multichip modules for gigabyte storage.


Book Synopsis Semiconductor Memories by : Ashok K. Sharma

Download or read book Semiconductor Memories written by Ashok K. Sharma and published by Wiley-IEEE Press. This book was released on 2002-09-10 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Memories provides in-depth coverage in the areas of design for testing, fault tolerance, failure modes and mechanisms, and screening and qualification methods including. * Memory cell structures and fabrication technologies. * Application-specific memories and architectures. * Memory design, fault modeling and test algorithms, limitations, and trade-offs. * Space environment, radiation hardening process and design techniques, and radiation testing. * Memory stacks and multichip modules for gigabyte storage.