Numerical Computations with GPUs

Numerical Computations with GPUs

Author: Volodymyr Kindratenko

Publisher: Springer

Published: 2014-07-03

Total Pages: 404

ISBN-13: 3319065483

DOWNLOAD EBOOK

This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.


Book Synopsis Numerical Computations with GPUs by : Volodymyr Kindratenko

Download or read book Numerical Computations with GPUs written by Volodymyr Kindratenko and published by Springer. This book was released on 2014-07-03 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.


Designing Scientific Applications on GPUs

Designing Scientific Applications on GPUs

Author: Raphael Couturier

Publisher: CRC Press

Published: 2013-11-21

Total Pages: 496

ISBN-13: 1466571640

DOWNLOAD EBOOK

Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.Understand the Benefits of Using GPUs for Many Scientific Applications


Book Synopsis Designing Scientific Applications on GPUs by : Raphael Couturier

Download or read book Designing Scientific Applications on GPUs written by Raphael Couturier and published by CRC Press. This book was released on 2013-11-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.Understand the Benefits of Using GPUs for Many Scientific Applications


GPU Gems 2

GPU Gems 2

Author: Matt Pharr

Publisher: Addison-Wesley Professional

Published: 2005

Total Pages: 814

ISBN-13: 9780321335593

DOWNLOAD EBOOK

More useful techniques, tips, and tricks for harnessing the power of the new generation of powerful GPUs.


Book Synopsis GPU Gems 2 by : Matt Pharr

Download or read book GPU Gems 2 written by Matt Pharr and published by Addison-Wesley Professional. This book was released on 2005 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: More useful techniques, tips, and tricks for harnessing the power of the new generation of powerful GPUs.


High Performance Computing for Computational Science - VECPAR 2006

High Performance Computing for Computational Science - VECPAR 2006

Author: Michel Daydé

Publisher: Springer Science & Business Media

Published: 2007-04-02

Total Pages: 742

ISBN-13: 3540713506

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-proceedings of the 7th International Conference on High Performance Computing for Computational Science, VECPAR 2006, held in Rio de Janeiro, Brazil, in June 2006. The 44 revised full papers presented together with one invited paper and 12 revised workshop papers cover Grid computing, cluster computing, numerical methods, large-scale simulations in Physics, and computing in Biosciences.


Book Synopsis High Performance Computing for Computational Science - VECPAR 2006 by : Michel Daydé

Download or read book High Performance Computing for Computational Science - VECPAR 2006 written by Michel Daydé and published by Springer Science & Business Media. This book was released on 2007-04-02 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 7th International Conference on High Performance Computing for Computational Science, VECPAR 2006, held in Rio de Janeiro, Brazil, in June 2006. The 44 revised full papers presented together with one invited paper and 12 revised workshop papers cover Grid computing, cluster computing, numerical methods, large-scale simulations in Physics, and computing in Biosciences.


Designing Scientific Applications on GPUs

Designing Scientific Applications on GPUs

Author: Raphael Couturier

Publisher: CRC Press

Published: 2013-11-21

Total Pages: 500

ISBN-13: 1466571624

DOWNLOAD EBOOK

Many of today’s complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards. Understand the Benefits of Using GPUs for Many Scientific Applications Designing Scientific Applications on GPUs shows you how to use GPUs for applications in diverse scientific fields, from physics and mathematics to computer science. The book explains the methods necessary for designing or porting your scientific application on GPUs. It will improve your knowledge about image processing, numerical applications, methodology to design efficient applications, optimization methods, and much more. Everything You Need to Design/Port Your Scientific Application on GPUs The first part of the book introduces the GPUs and Nvidia’s CUDA programming model, currently the most widespread environment for designing GPU applications. The second part focuses on significant image processing applications on GPUs. The third part presents general methodologies for software development on GPUs and the fourth part describes the use of GPUs for addressing several optimization problems. The fifth part covers many numerical applications, including obstacle problems, fluid simulation, and atomic physics models. The last part illustrates agent-based simulations, pseudorandom number generation, and the solution of large sparse linear systems for integer factorization. Some of the codes presented in the book are available online.


Book Synopsis Designing Scientific Applications on GPUs by : Raphael Couturier

Download or read book Designing Scientific Applications on GPUs written by Raphael Couturier and published by CRC Press. This book was released on 2013-11-21 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of today’s complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards. Understand the Benefits of Using GPUs for Many Scientific Applications Designing Scientific Applications on GPUs shows you how to use GPUs for applications in diverse scientific fields, from physics and mathematics to computer science. The book explains the methods necessary for designing or porting your scientific application on GPUs. It will improve your knowledge about image processing, numerical applications, methodology to design efficient applications, optimization methods, and much more. Everything You Need to Design/Port Your Scientific Application on GPUs The first part of the book introduces the GPUs and Nvidia’s CUDA programming model, currently the most widespread environment for designing GPU applications. The second part focuses on significant image processing applications on GPUs. The third part presents general methodologies for software development on GPUs and the fourth part describes the use of GPUs for addressing several optimization problems. The fifth part covers many numerical applications, including obstacle problems, fluid simulation, and atomic physics models. The last part illustrates agent-based simulations, pseudorandom number generation, and the solution of large sparse linear systems for integer factorization. Some of the codes presented in the book are available online.


GPGPU Programming for Games and Science

GPGPU Programming for Games and Science

Author: David H. Eberly

Publisher: CRC Press

Published: 2014-08-15

Total Pages: 471

ISBN-13: 1466595353

DOWNLOAD EBOOK

An In-Depth, Practical Guide to GPGPU Programming Using Direct3D 11 GPGPU Programming for Games and Science demonstrates how to achieve the following requirements to tackle practical problems in computer science and software engineering: Robustness Accuracy Speed Quality source code that is easily maintained, reusable, and readable The book primarily addresses programming on a graphics processing unit (GPU) while covering some material also relevant to programming on a central processing unit (CPU). It discusses many concepts of general purpose GPU (GPGPU) programming and presents practical examples in game programming and scientific programming. The author first describes numerical issues that arise when computing with floating-point arithmetic, including making trade-offs among robustness, accuracy, and speed. He then shows how single instruction multiple data (SIMD) extensions work on CPUs since GPUs also use SIMD. The core of the book focuses on the GPU from the perspective of Direct3D 11 (D3D11) and the High Level Shading Language (HLSL). This chapter covers drawing 3D objects; vertex, geometry, pixel, and compute shaders; input and output resources for shaders; copying data between CPU and GPU; configuring two or more GPUs to act as one; and IEEE floating-point support on a GPU. The book goes on to explore practical matters of programming a GPU, including code sharing among applications and performing basic tasks on the GPU. Focusing on mathematics, it next discusses vector and matrix algebra, rotations and quaternions, and coordinate systems. The final chapter gives several sample GPGPU applications on relatively advanced topics. Web Resource Available on a supporting website, the author’s fully featured Geometric Tools Engine for computing and graphics saves you from having to write a large amount of infrastructure code necessary for even the simplest of applications involving shader programming. The engine provides robust and accurate source code with SIMD when appropriate and GPU versions of algorithms when possible.


Book Synopsis GPGPU Programming for Games and Science by : David H. Eberly

Download or read book GPGPU Programming for Games and Science written by David H. Eberly and published by CRC Press. This book was released on 2014-08-15 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: An In-Depth, Practical Guide to GPGPU Programming Using Direct3D 11 GPGPU Programming for Games and Science demonstrates how to achieve the following requirements to tackle practical problems in computer science and software engineering: Robustness Accuracy Speed Quality source code that is easily maintained, reusable, and readable The book primarily addresses programming on a graphics processing unit (GPU) while covering some material also relevant to programming on a central processing unit (CPU). It discusses many concepts of general purpose GPU (GPGPU) programming and presents practical examples in game programming and scientific programming. The author first describes numerical issues that arise when computing with floating-point arithmetic, including making trade-offs among robustness, accuracy, and speed. He then shows how single instruction multiple data (SIMD) extensions work on CPUs since GPUs also use SIMD. The core of the book focuses on the GPU from the perspective of Direct3D 11 (D3D11) and the High Level Shading Language (HLSL). This chapter covers drawing 3D objects; vertex, geometry, pixel, and compute shaders; input and output resources for shaders; copying data between CPU and GPU; configuring two or more GPUs to act as one; and IEEE floating-point support on a GPU. The book goes on to explore practical matters of programming a GPU, including code sharing among applications and performing basic tasks on the GPU. Focusing on mathematics, it next discusses vector and matrix algebra, rotations and quaternions, and coordinate systems. The final chapter gives several sample GPGPU applications on relatively advanced topics. Web Resource Available on a supporting website, the author’s fully featured Geometric Tools Engine for computing and graphics saves you from having to write a large amount of infrastructure code necessary for even the simplest of applications involving shader programming. The engine provides robust and accurate source code with SIMD when appropriate and GPU versions of algorithms when possible.


IPython Interactive Computing and Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook

Author: Cyrille Rossant

Publisher: Packt Publishing Ltd

Published: 2014-09-25

Total Pages: 899

ISBN-13: 178328482X

DOWNLOAD EBOOK

Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.


Book Synopsis IPython Interactive Computing and Visualization Cookbook by : Cyrille Rossant

Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.


High Performance Computing and Communications

High Performance Computing and Communications

Author: Ronald Perrott

Publisher: Springer Science & Business Media

Published: 2007-09-17

Total Pages: 841

ISBN-13: 3540754431

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Conference on High Performance Computing and Communications, HPCC 2007, held in Houston, USA, September 26-28, 2007. The 75 revised full papers presented were carefully reviewed and selected from 272 submissions. The papers address all current issues of parallel and distributed systems and high performance computing and communication as there are: networking protocols, routing, and algorithms, languages and compilers for HPC, parallel and distributed architectures and algorithms, embedded systems, wireless, mobile and pervasive computing, Web services and internet computing, peer-to-peer computing, grid and cluster computing, reliability, fault-tolerance, and security, performance evaluation and measurement, tools and environments for software development, distributed systems and applications, database applications and data mining, biological/molecular computing, collaborative and cooperative environments, and programming interfaces for parallel systems.


Book Synopsis High Performance Computing and Communications by : Ronald Perrott

Download or read book High Performance Computing and Communications written by Ronald Perrott and published by Springer Science & Business Media. This book was released on 2007-09-17 with total page 841 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on High Performance Computing and Communications, HPCC 2007, held in Houston, USA, September 26-28, 2007. The 75 revised full papers presented were carefully reviewed and selected from 272 submissions. The papers address all current issues of parallel and distributed systems and high performance computing and communication as there are: networking protocols, routing, and algorithms, languages and compilers for HPC, parallel and distributed architectures and algorithms, embedded systems, wireless, mobile and pervasive computing, Web services and internet computing, peer-to-peer computing, grid and cluster computing, reliability, fault-tolerance, and security, performance evaluation and measurement, tools and environments for software development, distributed systems and applications, database applications and data mining, biological/molecular computing, collaborative and cooperative environments, and programming interfaces for parallel systems.


GPU Programming in MATLAB

GPU Programming in MATLAB

Author: Nikolaos Ploskas

Publisher: Morgan Kaufmann

Published: 2016-08-25

Total Pages: 318

ISBN-13: 0128051337

DOWNLOAD EBOOK

GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language Presents case studies illustrating key concepts across multiple fields Includes source code, sample datasets, and lecture slides


Book Synopsis GPU Programming in MATLAB by : Nikolaos Ploskas

Download or read book GPU Programming in MATLAB written by Nikolaos Ploskas and published by Morgan Kaufmann. This book was released on 2016-08-25 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language Presents case studies illustrating key concepts across multiple fields Includes source code, sample datasets, and lecture slides


Introduction to High Performance Scientific Computing

Introduction to High Performance Scientific Computing

Author: David L. Chopp

Publisher: SIAM

Published: 2019-03-01

Total Pages: 468

ISBN-13: 1611975646

DOWNLOAD EBOOK

Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems.


Book Synopsis Introduction to High Performance Scientific Computing by : David L. Chopp

Download or read book Introduction to High Performance Scientific Computing written by David L. Chopp and published by SIAM. This book was released on 2019-03-01 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems.