Numerical Methods in Computational Mechanics

Numerical Methods in Computational Mechanics

Author: Jamshid Ghaboussi

Publisher: CRC Press

Published: 2016-11-25

Total Pages: 219

ISBN-13: 1315351641

DOWNLOAD EBOOK

This book explores the numerical algorithms underpinning modern finite element based computational mechanics software. It covers all the major numerical methods that are used in computational mechanics. It reviews the basic concepts in linear algebra and advanced matrix theory, before covering solution of systems of equations, symmetric eigenvalue solution methods, and direct integration of discrete dynamic equations of motion, illustrated with numerical examples. This book suits a graduate course in mechanics based disciplines, and will help software developers in computational mechanics. Increased understanding of the underlying numerical methods will also help practicing engineers to use the computational mechanics software more effectively.


Book Synopsis Numerical Methods in Computational Mechanics by : Jamshid Ghaboussi

Download or read book Numerical Methods in Computational Mechanics written by Jamshid Ghaboussi and published by CRC Press. This book was released on 2016-11-25 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the numerical algorithms underpinning modern finite element based computational mechanics software. It covers all the major numerical methods that are used in computational mechanics. It reviews the basic concepts in linear algebra and advanced matrix theory, before covering solution of systems of equations, symmetric eigenvalue solution methods, and direct integration of discrete dynamic equations of motion, illustrated with numerical examples. This book suits a graduate course in mechanics based disciplines, and will help software developers in computational mechanics. Increased understanding of the underlying numerical methods will also help practicing engineers to use the computational mechanics software more effectively.


Computational Engineering - Introduction to Numerical Methods

Computational Engineering - Introduction to Numerical Methods

Author: Michael Schäfer

Publisher: Springer Nature

Published: 2021-07-19

Total Pages: 374

ISBN-13: 3030760278

DOWNLOAD EBOOK

Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.


Book Synopsis Computational Engineering - Introduction to Numerical Methods by : Michael Schäfer

Download or read book Computational Engineering - Introduction to Numerical Methods written by Michael Schäfer and published by Springer Nature. This book was released on 2021-07-19 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.


Numerical Methods in Computational Mechanics

Numerical Methods in Computational Mechanics

Author: Jamshid Ghaboussi

Publisher: CRC Press

Published: 2016-11-25

Total Pages: 332

ISBN-13: 1498746780

DOWNLOAD EBOOK

This book explores the numerical algorithms underpinning modern finite element based computational mechanics software. It covers all the major numerical methods that are used in computational mechanics. It reviews the basic concepts in linear algebra and advanced matrix theory, before covering solution of systems of equations, symmetric eigenvalue solution methods, and direct integration of discrete dynamic equations of motion, illustrated with numerical examples. This book suits a graduate course in mechanics based disciplines, and will help software developers in computational mechanics. Increased understanding of the underlying numerical methods will also help practicing engineers to use the computational mechanics software more effectively.


Book Synopsis Numerical Methods in Computational Mechanics by : Jamshid Ghaboussi

Download or read book Numerical Methods in Computational Mechanics written by Jamshid Ghaboussi and published by CRC Press. This book was released on 2016-11-25 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the numerical algorithms underpinning modern finite element based computational mechanics software. It covers all the major numerical methods that are used in computational mechanics. It reviews the basic concepts in linear algebra and advanced matrix theory, before covering solution of systems of equations, symmetric eigenvalue solution methods, and direct integration of discrete dynamic equations of motion, illustrated with numerical examples. This book suits a graduate course in mechanics based disciplines, and will help software developers in computational mechanics. Increased understanding of the underlying numerical methods will also help practicing engineers to use the computational mechanics software more effectively.


Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Author: Laura De Lorenzis

Publisher: Springer Nature

Published: 2020-02-08

Total Pages: 225

ISBN-13: 3030375188

DOWNLOAD EBOOK

The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.


Book Synopsis Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids by : Laura De Lorenzis

Download or read book Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids written by Laura De Lorenzis and published by Springer Nature. This book was released on 2020-02-08 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.


Computational Methods in Solid Mechanics

Computational Methods in Solid Mechanics

Author: A. Curnier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 412

ISBN-13: 940111112X

DOWNLOAD EBOOK

This volume presents an introduction to the three numerical methods most commonly used in the mechanical analysis of deformable solids, viz. the finite element method (FEM), the linear iteration method (LIM), and the finite difference method (FDM). The book has been written from the point of view of simplicity and unity; its originality lies in the comparable emphasis given to the spatial, temporal and nonlinear dimensions of problem solving. This leads to a neat global algorithm. Chapter 1 addresses the problem of a one-dimensional bar, with emphasis being given to the virtual work principle. Chapters 2--4 present the three numerical methods. Although the discussion relates to a one-dimensional model, the formalism used is extendable to two-dimensional situations. Chapter 5 is devoted to a detailed discussion of the compact combination of the three methods, and contains several sections concerning their computer implementation. Finally, Chapter 6 gives a generalization to two and three dimensions of both the mechanical and numerical aspects. For graduate students and researchers whose work involves the theory and application of computational solid mechanics.


Book Synopsis Computational Methods in Solid Mechanics by : A. Curnier

Download or read book Computational Methods in Solid Mechanics written by A. Curnier and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an introduction to the three numerical methods most commonly used in the mechanical analysis of deformable solids, viz. the finite element method (FEM), the linear iteration method (LIM), and the finite difference method (FDM). The book has been written from the point of view of simplicity and unity; its originality lies in the comparable emphasis given to the spatial, temporal and nonlinear dimensions of problem solving. This leads to a neat global algorithm. Chapter 1 addresses the problem of a one-dimensional bar, with emphasis being given to the virtual work principle. Chapters 2--4 present the three numerical methods. Although the discussion relates to a one-dimensional model, the formalism used is extendable to two-dimensional situations. Chapter 5 is devoted to a detailed discussion of the compact combination of the three methods, and contains several sections concerning their computer implementation. Finally, Chapter 6 gives a generalization to two and three dimensions of both the mechanical and numerical aspects. For graduate students and researchers whose work involves the theory and application of computational solid mechanics.


Multiscale Methods in Computational Mechanics

Multiscale Methods in Computational Mechanics

Author: René de Borst

Publisher: Springer Science & Business Media

Published: 2010-10-09

Total Pages: 451

ISBN-13: 9048198097

DOWNLOAD EBOOK

This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.


Book Synopsis Multiscale Methods in Computational Mechanics by : René de Borst

Download or read book Multiscale Methods in Computational Mechanics written by René de Borst and published by Springer Science & Business Media. This book was released on 2010-10-09 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a modern, up-to-date account of recent developments in computational multiscale mechanics. Both upscaling and concurrent computing methodologies will be addressed for a range of application areas in computational solid and fluid mechanics: Scale transitions in materials, turbulence in fluid-structure interaction problems, multiscale/multilevel optimization, multiscale poromechanics. A Dutch-German research group that consists of qualified and well-known researchers in the field has worked for six years on the topic of computational multiscale mechanics. This text provides a unique opportunity to consolidate and disseminate the knowledge gained in this project. The addition of chapters written by experts outside this working group provides a broad and multifaceted view of this rapidly evolving field.


Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems

Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems

Author: Reinhard Hinkelmann

Publisher: Springer Science & Business Media

Published: 2006-08-10

Total Pages: 320

ISBN-13: 3540323791

DOWNLOAD EBOOK

Numerical simulation models have become indispensable in hydro- and environmental sciences and engineering. This monograph presents a general introduction to numerical simulation in environment water, based on the solution of the equations for groundwater flow and transport processes, for multiphase and multicomponent flow and transport processes in the subsurface as well as for flow and transport processes in surface waters. It displays in detail the state of the art of discretization and stabilization methods (e.g. finite-difference, finite-element, and finite-volume methods), parallel methods, and adaptive methods as well as fast solvers, with particular focus on explaining the interactions of the different methods. The book gives a brief overview of various information-processing techniques and demonstrates the interactions of the numerical methods with the information-processing techniques, in order to achieve efficient numerical simulations for a wide range of applications in environment water.


Book Synopsis Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems by : Reinhard Hinkelmann

Download or read book Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems written by Reinhard Hinkelmann and published by Springer Science & Business Media. This book was released on 2006-08-10 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation models have become indispensable in hydro- and environmental sciences and engineering. This monograph presents a general introduction to numerical simulation in environment water, based on the solution of the equations for groundwater flow and transport processes, for multiphase and multicomponent flow and transport processes in the subsurface as well as for flow and transport processes in surface waters. It displays in detail the state of the art of discretization and stabilization methods (e.g. finite-difference, finite-element, and finite-volume methods), parallel methods, and adaptive methods as well as fast solvers, with particular focus on explaining the interactions of the different methods. The book gives a brief overview of various information-processing techniques and demonstrates the interactions of the numerical methods with the information-processing techniques, in order to achieve efficient numerical simulations for a wide range of applications in environment water.


Computational Mechanics of Composite Materials

Computational Mechanics of Composite Materials

Author: Marcin Marek Kaminski

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 434

ISBN-13: 1846280494

DOWNLOAD EBOOK

Computational Mechanics of Composite Materials lays stress on the advantages of combining theoretical advancements in applied mathematics and mechanics with the probabilistic approach to experimental data in meeting the practical needs of engineers. Features: Programs for the probabilistic homogenisation of composite structures with finite numbers of components allow composites to be treated as homogeneous materials with simpler behaviours. Treatment of defects in the interfaces within heterogeneous materials and those arising in composite objects as a whole by stochastic modelling. New models for the reliability of composite structures. Novel numerical algorithms for effective Monte-Carlo simulation. Computational Mechanics of Composite Materials will be of interest to academic and practising civil, mechanical, electronic and aerospatial engineers, to materials scientists and to applied mathematicians requiring accurate and usable models of the behaviour of composite materials.


Book Synopsis Computational Mechanics of Composite Materials by : Marcin Marek Kaminski

Download or read book Computational Mechanics of Composite Materials written by Marcin Marek Kaminski and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Mechanics of Composite Materials lays stress on the advantages of combining theoretical advancements in applied mathematics and mechanics with the probabilistic approach to experimental data in meeting the practical needs of engineers. Features: Programs for the probabilistic homogenisation of composite structures with finite numbers of components allow composites to be treated as homogeneous materials with simpler behaviours. Treatment of defects in the interfaces within heterogeneous materials and those arising in composite objects as a whole by stochastic modelling. New models for the reliability of composite structures. Novel numerical algorithms for effective Monte-Carlo simulation. Computational Mechanics of Composite Materials will be of interest to academic and practising civil, mechanical, electronic and aerospatial engineers, to materials scientists and to applied mathematicians requiring accurate and usable models of the behaviour of composite materials.


Numerical Methods and Methods of Approximation in Science and Engineering

Numerical Methods and Methods of Approximation in Science and Engineering

Author: Karan S. Surana

Publisher: CRC Press

Published: 2018-10-31

Total Pages: 478

ISBN-13: 0429650507

DOWNLOAD EBOOK

Numerical Methods and Methods of Approximation in Science and Engineering prepares students and other readers for advanced studies involving applied numerical and computational analysis. Focused on building a sound theoretical foundation, it uses a clear and simple approach backed by numerous worked examples to facilitate understanding of numerical methods and their application. Readers will learn to structure a sequence of operations into a program, using the programming language of their choice; this approach leads to a deeper understanding of the methods and their limitations. Features: Provides a strong theoretical foundation for learning and applying numerical methods Takes a generic approach to engineering analysis, rather than using a specific programming language Built around a consistent, understandable model for conducting engineering analysis Prepares students for advanced coursework, and use of tools such as FEA and CFD Presents numerous detailed examples and problems, and a Solutions Manual for instructors


Book Synopsis Numerical Methods and Methods of Approximation in Science and Engineering by : Karan S. Surana

Download or read book Numerical Methods and Methods of Approximation in Science and Engineering written by Karan S. Surana and published by CRC Press. This book was released on 2018-10-31 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods and Methods of Approximation in Science and Engineering prepares students and other readers for advanced studies involving applied numerical and computational analysis. Focused on building a sound theoretical foundation, it uses a clear and simple approach backed by numerous worked examples to facilitate understanding of numerical methods and their application. Readers will learn to structure a sequence of operations into a program, using the programming language of their choice; this approach leads to a deeper understanding of the methods and their limitations. Features: Provides a strong theoretical foundation for learning and applying numerical methods Takes a generic approach to engineering analysis, rather than using a specific programming language Built around a consistent, understandable model for conducting engineering analysis Prepares students for advanced coursework, and use of tools such as FEA and CFD Presents numerous detailed examples and problems, and a Solutions Manual for instructors


Numerical Methods for Nonsmooth Dynamical Systems

Numerical Methods for Nonsmooth Dynamical Systems

Author: Vincent Acary

Publisher: Springer Science & Business Media

Published: 2008-01-30

Total Pages: 529

ISBN-13: 3540753923

DOWNLOAD EBOOK

This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.


Book Synopsis Numerical Methods for Nonsmooth Dynamical Systems by : Vincent Acary

Download or read book Numerical Methods for Nonsmooth Dynamical Systems written by Vincent Acary and published by Springer Science & Business Media. This book was released on 2008-01-30 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.