Numerical Methods in Contact Mechanics

Numerical Methods in Contact Mechanics

Author: Vladislav A. Yastrebov

Publisher: John Wiley & Sons

Published: 2013-02-13

Total Pages: 303

ISBN-13: 1118648056

DOWNLOAD EBOOK

Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.


Book Synopsis Numerical Methods in Contact Mechanics by : Vladislav A. Yastrebov

Download or read book Numerical Methods in Contact Mechanics written by Vladislav A. Yastrebov and published by John Wiley & Sons. This book was released on 2013-02-13 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.


Computational Contact Mechanics

Computational Contact Mechanics

Author: Peter Wriggers

Publisher: Springer Science & Business Media

Published: 2008-04-01

Total Pages: 252

ISBN-13: 3211772987

DOWNLOAD EBOOK

Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.


Book Synopsis Computational Contact Mechanics by : Peter Wriggers

Download or read book Computational Contact Mechanics written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2008-04-01 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.


Numerical Methods in Contact Mechanics

Numerical Methods in Contact Mechanics

Author: Vladislav A. Yastrebov

Publisher:

Published: 2013

Total Pages: 391

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Numerical Methods in Contact Mechanics by : Vladislav A. Yastrebov

Download or read book Numerical Methods in Contact Mechanics written by Vladislav A. Yastrebov and published by . This book was released on 2013 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Introduction to Computational Contact Mechanics

Introduction to Computational Contact Mechanics

Author: Alexander Konyukhov

Publisher: John Wiley & Sons

Published: 2015-04-29

Total Pages: 304

ISBN-13: 1118770641

DOWNLOAD EBOOK

Introduction to Computational Contact Mechanics: A GeometricalApproach covers the fundamentals of computational contactmechanics and focuses on its practical implementation. Part one ofthis textbook focuses on the underlying theory and covers essentialinformation about differential geometry and mathematical methodswhich are necessary to build the computational algorithmindependently from other courses in mechanics. The geometricallyexact theory for the computational contact mechanics is describedin step-by-step manner, using examples of strict derivation from amathematical point of view. The final goal of the theory is toconstruct in the independent approximation form /so-calledcovariant form, including application to high-order andisogeometric finite elements. The second part of a book is a practical guide for programming ofcontact elements and is written in such a way that makes it easyfor a programmer to implement using any programming language. Allprogramming examples are accompanied by a set of verificationexamples allowing the user to learn the research verificationtechnique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis ofcontact problems Presents the geometrically exact theory for computationalcontact mechanics Describes algorithms used in well-known finite element softwarepackages Describes modeling of forces as an inverse contactalgorithm Includes practical exercises Contains unique verification examples such as the generalizedEuler formula for a rope on a surface, and the impact problem andverification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A GeometricalApproach is an ideal textbook for graduates and seniorundergraduates, and is also a useful reference for researchers andpractitioners working in computational mechanics.


Book Synopsis Introduction to Computational Contact Mechanics by : Alexander Konyukhov

Download or read book Introduction to Computational Contact Mechanics written by Alexander Konyukhov and published by John Wiley & Sons. This book was released on 2015-04-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Computational Contact Mechanics: A GeometricalApproach covers the fundamentals of computational contactmechanics and focuses on its practical implementation. Part one ofthis textbook focuses on the underlying theory and covers essentialinformation about differential geometry and mathematical methodswhich are necessary to build the computational algorithmindependently from other courses in mechanics. The geometricallyexact theory for the computational contact mechanics is describedin step-by-step manner, using examples of strict derivation from amathematical point of view. The final goal of the theory is toconstruct in the independent approximation form /so-calledcovariant form, including application to high-order andisogeometric finite elements. The second part of a book is a practical guide for programming ofcontact elements and is written in such a way that makes it easyfor a programmer to implement using any programming language. Allprogramming examples are accompanied by a set of verificationexamples allowing the user to learn the research verificationtechnique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis ofcontact problems Presents the geometrically exact theory for computationalcontact mechanics Describes algorithms used in well-known finite element softwarepackages Describes modeling of forces as an inverse contactalgorithm Includes practical exercises Contains unique verification examples such as the generalizedEuler formula for a rope on a surface, and the impact problem andverification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A GeometricalApproach is an ideal textbook for graduates and seniorundergraduates, and is also a useful reference for researchers andpractitioners working in computational mechanics.


Method of Dimensionality Reduction in Contact Mechanics and Friction

Method of Dimensionality Reduction in Contact Mechanics and Friction

Author: Valentin L. Popov

Publisher: Springer

Published: 2014-08-19

Total Pages: 268

ISBN-13: 3642538762

DOWNLOAD EBOOK

This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in contact as well as their surface topography and adhesive properties are the inputs of the calculations. In particular, it is possible to capture the entire dynamics of a system – beginning with the macroscopic, dynamic contact calculation all the way down to the influence of roughness – in a single numerical simulation model. Accordingly, MDR allows for the unification of the methods of solving contact problems on different scales. The goals of this book are on the one hand, to prove the applicability and reliability of the method and on the other hand, to explain its extremely simple application to those interested.


Book Synopsis Method of Dimensionality Reduction in Contact Mechanics and Friction by : Valentin L. Popov

Download or read book Method of Dimensionality Reduction in Contact Mechanics and Friction written by Valentin L. Popov and published by Springer. This book was released on 2014-08-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in contact as well as their surface topography and adhesive properties are the inputs of the calculations. In particular, it is possible to capture the entire dynamics of a system – beginning with the macroscopic, dynamic contact calculation all the way down to the influence of roughness – in a single numerical simulation model. Accordingly, MDR allows for the unification of the methods of solving contact problems on different scales. The goals of this book are on the one hand, to prove the applicability and reliability of the method and on the other hand, to explain its extremely simple application to those interested.


Computational Contact Mechanics

Computational Contact Mechanics

Author: Alexander Konyukhov

Publisher: Springer Science & Business Media

Published: 2012-08-14

Total Pages: 446

ISBN-13: 3642315313

DOWNLOAD EBOOK

This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.


Book Synopsis Computational Contact Mechanics by : Alexander Konyukhov

Download or read book Computational Contact Mechanics written by Alexander Konyukhov and published by Springer Science & Business Media. This book was released on 2012-08-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.


Analysis and Simulation of Contact Problems

Analysis and Simulation of Contact Problems

Author: Peter Wriggers

Publisher: Springer Science & Business Media

Published: 2006-08-15

Total Pages: 393

ISBN-13: 3540317619

DOWNLOAD EBOOK

This carefully edited book offers a state-of-the-art overview on formulation, mathematical analysis and numerical solution procedures of contact problems. The contributions collected in this volume summarize the lectures presented by leading scientists in the area of contact mechanics, during the 4th Contact Mechanics International Symposium (CMIS) held in Hannover, Germany, 2005.


Book Synopsis Analysis and Simulation of Contact Problems by : Peter Wriggers

Download or read book Analysis and Simulation of Contact Problems written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2006-08-15 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This carefully edited book offers a state-of-the-art overview on formulation, mathematical analysis and numerical solution procedures of contact problems. The contributions collected in this volume summarize the lectures presented by leading scientists in the area of contact mechanics, during the 4th Contact Mechanics International Symposium (CMIS) held in Hannover, Germany, 2005.


Computational Contact Mechanics

Computational Contact Mechanics

Author: Peter Wriggers

Publisher: Springer Science & Business Media

Published: 2006-10-06

Total Pages: 521

ISBN-13: 354032609X

DOWNLOAD EBOOK

This is the second edition of the valuable reference source for numerical simulations of contact mechanics suitable for many fields. These include civil engineering, car design, aeronautics, metal forming, or biomechanics. For this second edition, illustrative simplified examples and new discretisation schemes and adaptive procedures for coupled problems are added. This book is at the cutting edge of an area of significant and growing interest in computational mechanics.


Book Synopsis Computational Contact Mechanics by : Peter Wriggers

Download or read book Computational Contact Mechanics written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2006-10-06 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the valuable reference source for numerical simulations of contact mechanics suitable for many fields. These include civil engineering, car design, aeronautics, metal forming, or biomechanics. For this second edition, illustrative simplified examples and new discretisation schemes and adaptive procedures for coupled problems are added. This book is at the cutting edge of an area of significant and growing interest in computational mechanics.


Computational Methods in Contact Mechanics V

Computational Methods in Contact Mechanics V

Author: Jose Dominguez

Publisher: Computational Mechanics

Published: 2001

Total Pages: 352

ISBN-13:

DOWNLOAD EBOOK

Engineering fields such as fracture mechanics, fatigue, friction and wear, contact mechanics, and damage are closely related and responsible for the reliability and durability of mechanical systems. The importance of contact mechanics problems - complex, time dependent and highly non-linear problems due to changes in the geometry and friction over contact surfaces - has been established in recent years, while the development of modern computational methods means that it now possible to solve complex problems for which there are no analytical solutions.


Book Synopsis Computational Methods in Contact Mechanics V by : Jose Dominguez

Download or read book Computational Methods in Contact Mechanics V written by Jose Dominguez and published by Computational Mechanics. This book was released on 2001 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering fields such as fracture mechanics, fatigue, friction and wear, contact mechanics, and damage are closely related and responsible for the reliability and durability of mechanical systems. The importance of contact mechanics problems - complex, time dependent and highly non-linear problems due to changes in the geometry and friction over contact surfaces - has been established in recent years, while the development of modern computational methods means that it now possible to solve complex problems for which there are no analytical solutions.


Contact Problems in Elasticity

Contact Problems in Elasticity

Author: N. Kikuchi

Publisher: SIAM

Published: 1988-01-01

Total Pages: 508

ISBN-13: 9781611970845

DOWNLOAD EBOOK

The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.


Book Synopsis Contact Problems in Elasticity by : N. Kikuchi

Download or read book Contact Problems in Elasticity written by N. Kikuchi and published by SIAM. This book was released on 1988-01-01 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.