Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes

Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes

Author: N.C. Markatos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 477

ISBN-13: 3642827810

DOWNLOAD EBOOK

Computational fluid flow is not an easy subject. Not only is the mathematical representation of physico-chemical hydrodynamics complex, but the accurate numerical solution of the resulting equations has challenged many numerate scientists and engineers over the past two decades. The modelling of physical phenomena and testing of new numerical schemes has been aided in the last 10 years or so by a number of basic fluid flow programs (MAC, TEACH, 2-E-FIX, GENMIX, etc). However, in 1981 a program (perhaps more precisely, a software product) called PHOENICS was released that was then (and still remains) arguably, the most powerful computational tool in the whole area of endeavour surrounding fluid dynamics. The aim of PHOENICS is to provide a framework for the modelling of complex processes involving fluid flow, heat transfer and chemical reactions. PHOENICS has now been is use for four years by a wide range of users across the world. It was thus perceived as useful to provide a forum for PHOENICS users to share their experiences in trying to address a wide range of problems. So it was that the First International PHOENICS Users Conference was conceived and planned for September 1985. The location, at the Dartford Campus of Thames Polytechnic, in the event, proved to be an ideal site, encouraging substantial interaction between the participants.


Book Synopsis Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes by : N.C. Markatos

Download or read book Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes written by N.C. Markatos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid flow is not an easy subject. Not only is the mathematical representation of physico-chemical hydrodynamics complex, but the accurate numerical solution of the resulting equations has challenged many numerate scientists and engineers over the past two decades. The modelling of physical phenomena and testing of new numerical schemes has been aided in the last 10 years or so by a number of basic fluid flow programs (MAC, TEACH, 2-E-FIX, GENMIX, etc). However, in 1981 a program (perhaps more precisely, a software product) called PHOENICS was released that was then (and still remains) arguably, the most powerful computational tool in the whole area of endeavour surrounding fluid dynamics. The aim of PHOENICS is to provide a framework for the modelling of complex processes involving fluid flow, heat transfer and chemical reactions. PHOENICS has now been is use for four years by a wide range of users across the world. It was thus perceived as useful to provide a forum for PHOENICS users to share their experiences in trying to address a wide range of problems. So it was that the First International PHOENICS Users Conference was conceived and planned for September 1985. The location, at the Dartford Campus of Thames Polytechnic, in the event, proved to be an ideal site, encouraging substantial interaction between the participants.


Numerical Simulation of Heat Exchangers

Numerical Simulation of Heat Exchangers

Author: W. J. Minkowycz

Publisher: CRC Press

Published: 2017-04-07

Total Pages: 230

ISBN-13: 1482250209

DOWNLOAD EBOOK

This book deals with certain aspects of material science, particularly with the release of thermal energy associated with bond breaking. It clearly establishes the connection between heat transfer rates and product quality. The editors then sharply draw the thermal distinctions between the various categories of welding processes, and demonstrate how these distinctions are translated into simulation model uniqueness. The book discusses the incorporation of radiative heat transfer processes into the simulation model.


Book Synopsis Numerical Simulation of Heat Exchangers by : W. J. Minkowycz

Download or read book Numerical Simulation of Heat Exchangers written by W. J. Minkowycz and published by CRC Press. This book was released on 2017-04-07 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with certain aspects of material science, particularly with the release of thermal energy associated with bond breaking. It clearly establishes the connection between heat transfer rates and product quality. The editors then sharply draw the thermal distinctions between the various categories of welding processes, and demonstrate how these distinctions are translated into simulation model uniqueness. The book discusses the incorporation of radiative heat transfer processes into the simulation model.


Introduction to Computational Mass Transfer

Introduction to Computational Mass Transfer

Author: Kuo-Tsung Yu

Publisher: Springer

Published: 2016-09-26

Total Pages: 425

ISBN-13: 9811024987

DOWNLOAD EBOOK

This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-Stokes equation using the lattice-Boltzmann model. This book is a valuable resource for researchers and graduate students in the fields of computational methodologies for the numerical simulation of fluid dynamics, mass and/or heat transfer involved in separation processes (distillation, absorption, extraction, adsorption etc.), chemical/biochemical reactions, and other related processes.


Book Synopsis Introduction to Computational Mass Transfer by : Kuo-Tsung Yu

Download or read book Introduction to Computational Mass Transfer written by Kuo-Tsung Yu and published by Springer. This book was released on 2016-09-26 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-Stokes equation using the lattice-Boltzmann model. This book is a valuable resource for researchers and graduate students in the fields of computational methodologies for the numerical simulation of fluid dynamics, mass and/or heat transfer involved in separation processes (distillation, absorption, extraction, adsorption etc.), chemical/biochemical reactions, and other related processes.


Flow and Heat or Mass Transfer in the Chemical Process Industry

Flow and Heat or Mass Transfer in the Chemical Process Industry

Author: Dimitrios V. Papavassiliou

Publisher: MDPI

Published: 2018-09-28

Total Pages: 215

ISBN-13: 303897238X

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Flow and Heat or Mass Transfer in the Chemical Process Industry" that was published in Fluids


Book Synopsis Flow and Heat or Mass Transfer in the Chemical Process Industry by : Dimitrios V. Papavassiliou

Download or read book Flow and Heat or Mass Transfer in the Chemical Process Industry written by Dimitrios V. Papavassiliou and published by MDPI. This book was released on 2018-09-28 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Flow and Heat or Mass Transfer in the Chemical Process Industry" that was published in Fluids


Numerical Heat Transfer and Fluid Flow

Numerical Heat Transfer and Fluid Flow

Author: Suhas Patankar

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 218

ISBN-13: 1351991515

DOWNLOAD EBOOK

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.


Book Synopsis Numerical Heat Transfer and Fluid Flow by : Suhas Patankar

Download or read book Numerical Heat Transfer and Fluid Flow written by Suhas Patankar and published by CRC Press. This book was released on 2018-10-08 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.


Numerical Heat Transfer and Fluid Flow

Numerical Heat Transfer and Fluid Flow

Author: Suhas Patankar

Publisher: Taylor & Francis

Published: 2018-10-08

Total Pages: 214

ISBN-13: 1482234211

DOWNLOAD EBOOK

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.


Book Synopsis Numerical Heat Transfer and Fluid Flow by : Suhas Patankar

Download or read book Numerical Heat Transfer and Fluid Flow written by Suhas Patankar and published by Taylor & Francis. This book was released on 2018-10-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.


Numerical Simulation of Heat Transfer and Fluid Flow Processes

Numerical Simulation of Heat Transfer and Fluid Flow Processes

Author:

Publisher:

Published: 2020

Total Pages:

ISBN-13: 9781800431362

DOWNLOAD EBOOK


Book Synopsis Numerical Simulation of Heat Transfer and Fluid Flow Processes by :

Download or read book Numerical Simulation of Heat Transfer and Fluid Flow Processes written by and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Bubbly Flows

Bubbly Flows

Author: Martin Sommerfeld

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 3642185401

DOWNLOAD EBOOK

The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.


Book Synopsis Bubbly Flows by : Martin Sommerfeld

Download or read book Bubbly Flows written by Martin Sommerfeld and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.


Advanced Computational Techniques for Heat and Mass Transfer in Food Processing

Advanced Computational Techniques for Heat and Mass Transfer in Food Processing

Author: Krunal Gangawane

Publisher: CRC Press

Published: 2022-02-01

Total Pages: 315

ISBN-13: 1000521419

DOWNLOAD EBOOK

Computational methods have risen as a powerful technique for exploring the system phenomena and solving real-life problems. Currently, there are two principle computational approaches for system analysis: continuous and discrete. In the continuous approach, the governing equations can be obtained by applying the fundamental laws, such as conservation of mass, momentum, and energy over an infinitesimal control volume. On the other hand, the discrete approach concentrates on mimicking the molecular movement within the system. Both approaches have pros and cons, and continuous development and improvement in the existing computational methods are ongoing. Advanced Computational Techniques for Heat and Mass Transfer in Food Processing provides, in a single source, information on the use of methods based on numerical and computational analysis as applied in food science and technology. It explores the use of various numerical/computational techniques for the simulation of fluid flow and heat and mass transfer within food products. Key Features: Explores various numerical techniques used for modeling and validation Describes the knowhow of numerical and computational techniques for food process operations Covers a detailed numerical or computational approach of the principles of heat and mass transfer in the food processing operation Discusses the detailed computational simulation procedure of the food operation Recent years have witnessed a rapid development in the field of computational techniques owing to its abundant benefit to the food processing industry. The relevance of advanced computational methods has helped in understanding the fundamental physics of thermal and hydrodynamic behavior that can provide benefits to the food processing industry in numerous applications. As a single information source for those interested in the use of methods based on numerical and computational analysis as applied in food science and technology, this book will ably serve any food academician or researcher in learning the advanced numerical techniques exploring fluid flow, crystallization, and other food processing operations.


Book Synopsis Advanced Computational Techniques for Heat and Mass Transfer in Food Processing by : Krunal Gangawane

Download or read book Advanced Computational Techniques for Heat and Mass Transfer in Food Processing written by Krunal Gangawane and published by CRC Press. This book was released on 2022-02-01 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational methods have risen as a powerful technique for exploring the system phenomena and solving real-life problems. Currently, there are two principle computational approaches for system analysis: continuous and discrete. In the continuous approach, the governing equations can be obtained by applying the fundamental laws, such as conservation of mass, momentum, and energy over an infinitesimal control volume. On the other hand, the discrete approach concentrates on mimicking the molecular movement within the system. Both approaches have pros and cons, and continuous development and improvement in the existing computational methods are ongoing. Advanced Computational Techniques for Heat and Mass Transfer in Food Processing provides, in a single source, information on the use of methods based on numerical and computational analysis as applied in food science and technology. It explores the use of various numerical/computational techniques for the simulation of fluid flow and heat and mass transfer within food products. Key Features: Explores various numerical techniques used for modeling and validation Describes the knowhow of numerical and computational techniques for food process operations Covers a detailed numerical or computational approach of the principles of heat and mass transfer in the food processing operation Discusses the detailed computational simulation procedure of the food operation Recent years have witnessed a rapid development in the field of computational techniques owing to its abundant benefit to the food processing industry. The relevance of advanced computational methods has helped in understanding the fundamental physics of thermal and hydrodynamic behavior that can provide benefits to the food processing industry in numerous applications. As a single information source for those interested in the use of methods based on numerical and computational analysis as applied in food science and technology, this book will ably serve any food academician or researcher in learning the advanced numerical techniques exploring fluid flow, crystallization, and other food processing operations.


Numerical Analysis of Heat and Mass Transfer in Porous Media

Numerical Analysis of Heat and Mass Transfer in Porous Media

Author: J.M.P.Q. Delgado

Publisher: Springer Science & Business Media

Published: 2012-06-25

Total Pages: 317

ISBN-13: 3642305326

DOWNLOAD EBOOK

The purpose of ‘Numerical Analysis of Heat and Mass Transfer in Porous Media’ is to provide a collection of recent contributions in the field of computational heat and mass transfer in porous media. The main benefit of the book is that it discusses the majority of the topics related to numerical transport phenomenon in engineering (including state-of-the-art and applications) and presents some of the most important theoretical and computational developments in porous media and transport phenomenon domain, providing a self-contained major reference that is appealing to both the scientists, researchers and the engineers. At the same time, these topics encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.


Book Synopsis Numerical Analysis of Heat and Mass Transfer in Porous Media by : J.M.P.Q. Delgado

Download or read book Numerical Analysis of Heat and Mass Transfer in Porous Media written by J.M.P.Q. Delgado and published by Springer Science & Business Media. This book was released on 2012-06-25 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of ‘Numerical Analysis of Heat and Mass Transfer in Porous Media’ is to provide a collection of recent contributions in the field of computational heat and mass transfer in porous media. The main benefit of the book is that it discusses the majority of the topics related to numerical transport phenomenon in engineering (including state-of-the-art and applications) and presents some of the most important theoretical and computational developments in porous media and transport phenomenon domain, providing a self-contained major reference that is appealing to both the scientists, researchers and the engineers. At the same time, these topics encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.