Observers for Linear Systems

Observers for Linear Systems

Author: John O'Reilly

Publisher: Academic Press

Published: 1983-01-28

Total Pages: 268

ISBN-13:

DOWNLOAD EBOOK

My aim, in writing this monograph, has been to remedy this omission by presenting a comprehensive and unified theory of observers for continuous-time and discrete -time linear systems. The book is intended for post-graduate students and researchers specializing in control systems, now a core subject in a number of disciplines. Forming, as it does, a self-contained volume it should also be of service to control engineers primarily interested in applications, and to mathematicians with some exposure to control problems.


Book Synopsis Observers for Linear Systems by : John O'Reilly

Download or read book Observers for Linear Systems written by John O'Reilly and published by Academic Press. This book was released on 1983-01-28 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: My aim, in writing this monograph, has been to remedy this omission by presenting a comprehensive and unified theory of observers for continuous-time and discrete -time linear systems. The book is intended for post-graduate students and researchers specializing in control systems, now a core subject in a number of disciplines. Forming, as it does, a self-contained volume it should also be of service to control engineers primarily interested in applications, and to mathematicians with some exposure to control problems.


Observers for Linear Systems. Mathematics in Science and Engineering

Observers for Linear Systems. Mathematics in Science and Engineering

Author:

Publisher:

Published: 1983

Total Pages: 246

ISBN-13: 9781282034815

DOWNLOAD EBOOK

My aim, in writing this monograph, has been to remedy this omission by presenting a comprehensive and unified theory of observers for continuous-time and discrete -time linear systems. The book is intended for post-graduate students and researchers specializing in control systems, now a core subject in a number of disciplines. Forming, as it does, a self-contained volume it should also be of service to control engineers primarily interested in applications, and to mathematicians with some exposure to control problems.


Book Synopsis Observers for Linear Systems. Mathematics in Science and Engineering by :

Download or read book Observers for Linear Systems. Mathematics in Science and Engineering written by and published by . This book was released on 1983 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: My aim, in writing this monograph, has been to remedy this omission by presenting a comprehensive and unified theory of observers for continuous-time and discrete -time linear systems. The book is intended for post-graduate students and researchers specializing in control systems, now a core subject in a number of disciplines. Forming, as it does, a self-contained volume it should also be of service to control engineers primarily interested in applications, and to mathematicians with some exposure to control problems.


Functional Observers for Dynamical Systems

Functional Observers for Dynamical Systems

Author: Hieu Trinh

Publisher: Springer Science & Business Media

Published: 2011-09-24

Total Pages: 226

ISBN-13: 3642240631

DOWNLOAD EBOOK

The theory of linear functional observers, which is the subject of this book, is increasingly becoming a popular researched topic because of the many advantages it presents in state observation and control system design. This book presents recent information on the current state of the art research in this field. This book will serve as a useful reference to researchers in this area of research to understand the fundamental concepts relevant to the theory of functional observers and to gather most recent advancements in the field. This book is useful to academics and postgraduate students researching into the theory of linear functional observers. This book can also be useful for specialized final year undergraduate courses in control systems engineering and applied mathematics with a research focus.


Book Synopsis Functional Observers for Dynamical Systems by : Hieu Trinh

Download or read book Functional Observers for Dynamical Systems written by Hieu Trinh and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of linear functional observers, which is the subject of this book, is increasingly becoming a popular researched topic because of the many advantages it presents in state observation and control system design. This book presents recent information on the current state of the art research in this field. This book will serve as a useful reference to researchers in this area of research to understand the fundamental concepts relevant to the theory of functional observers and to gather most recent advancements in the field. This book is useful to academics and postgraduate students researching into the theory of linear functional observers. This book can also be useful for specialized final year undergraduate courses in control systems engineering and applied mathematics with a research focus.


Observer Design for Nonlinear Dynamical Systems

Observer Design for Nonlinear Dynamical Systems

Author: Driss Boutat

Publisher: Springer Nature

Published: 2021-07-02

Total Pages: 192

ISBN-13: 303073742X

DOWNLOAD EBOOK

This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.


Book Synopsis Observer Design for Nonlinear Dynamical Systems by : Driss Boutat

Download or read book Observer Design for Nonlinear Dynamical Systems written by Driss Boutat and published by Springer Nature. This book was released on 2021-07-02 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.


Fundamentals of Linear State Space Systems

Fundamentals of Linear State Space Systems

Author: John S. Bay

Publisher: McGraw-Hill Science, Engineering & Mathematics

Published: 1999

Total Pages: 600

ISBN-13:

DOWNLOAD EBOOK

Spans a broad range of linear system theory concepts, but does so in a complete and sequential style. It is suitable for a first-year graduate or advanced undergraduate course in any field of engineering. State space methods are derived from first principles while drawing on the students' previous understanding of physical and mathematical concepts. The text requires only a knowledge of basic signals and systems theory, but takes the student, in a single semester, all the way through state feedback, observers, Kalman filters, and elementary I.Q.G. control.


Book Synopsis Fundamentals of Linear State Space Systems by : John S. Bay

Download or read book Fundamentals of Linear State Space Systems written by John S. Bay and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1999 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spans a broad range of linear system theory concepts, but does so in a complete and sequential style. It is suitable for a first-year graduate or advanced undergraduate course in any field of engineering. State space methods are derived from first principles while drawing on the students' previous understanding of physical and mathematical concepts. The text requires only a knowledge of basic signals and systems theory, but takes the student, in a single semester, all the way through state feedback, observers, Kalman filters, and elementary I.Q.G. control.


Observer Design for Nonlinear Systems

Observer Design for Nonlinear Systems

Author: Pauline Bernard

Publisher: Springer

Published: 2019-02-01

Total Pages: 187

ISBN-13: 3030111466

DOWNLOAD EBOOK

Observer Design for Nonlinear Systems deals with the design of observers for the large class of nonlinear continuous-time models. It contains a unified overview of a broad range of general designs, including the most recent results and their proofs, such as the homogeneous and nonlinear Luenberger design techniques. The book starts from the observation that most observer designs consist in looking for a reversible change of coordinates transforming the expression of the system dynamics into some specific structures, called normal forms, for which an observer is known. Therefore, the problem of observer design is broken down into three sub-problems: • What are the available normal forms and their associated observers?• Under which conditions can a system be transformed into one of these forms and through which transformation? • How can an inverse transformation that recovers an estimate in the given initial coordinates be achieved? This organisation allows the book to structure results within a united framework, highlighting the importance of the choice of the observer coordinates for nonlinear systems. In particular, the first part covers state-affine forms with their Luenberger or Kalman designs, and triangular forms with their homogeneous high-gain designs. The second part addresses the transformation into linear forms through linearization by output injection or in the context of a nonlinear Luenberger design, and into triangular forms under the well-known uniform and differential observability assumptions. Finally, the third part presents some recently developed methods for avoiding the numerically challenging inversion of the transformation. Observer Design for Nonlinear Systems addresses students and researchers looking for an introduction to or an overview of the state of the art in observer design for nonlinear continuous-time dynamical systems. The book gathers the most important results focusing on a large and diffuse literature on general observer designs with global convergence, and is a valuable source of information for academics and practitioners.


Book Synopsis Observer Design for Nonlinear Systems by : Pauline Bernard

Download or read book Observer Design for Nonlinear Systems written by Pauline Bernard and published by Springer. This book was released on 2019-02-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Observer Design for Nonlinear Systems deals with the design of observers for the large class of nonlinear continuous-time models. It contains a unified overview of a broad range of general designs, including the most recent results and their proofs, such as the homogeneous and nonlinear Luenberger design techniques. The book starts from the observation that most observer designs consist in looking for a reversible change of coordinates transforming the expression of the system dynamics into some specific structures, called normal forms, for which an observer is known. Therefore, the problem of observer design is broken down into three sub-problems: • What are the available normal forms and their associated observers?• Under which conditions can a system be transformed into one of these forms and through which transformation? • How can an inverse transformation that recovers an estimate in the given initial coordinates be achieved? This organisation allows the book to structure results within a united framework, highlighting the importance of the choice of the observer coordinates for nonlinear systems. In particular, the first part covers state-affine forms with their Luenberger or Kalman designs, and triangular forms with their homogeneous high-gain designs. The second part addresses the transformation into linear forms through linearization by output injection or in the context of a nonlinear Luenberger design, and into triangular forms under the well-known uniform and differential observability assumptions. Finally, the third part presents some recently developed methods for avoiding the numerically challenging inversion of the transformation. Observer Design for Nonlinear Systems addresses students and researchers looking for an introduction to or an overview of the state of the art in observer design for nonlinear continuous-time dynamical systems. The book gathers the most important results focusing on a large and diffuse literature on general observer designs with global convergence, and is a valuable source of information for academics and practitioners.


Advances in Observer Design and Observation for Nonlinear Systems

Advances in Observer Design and Observation for Nonlinear Systems

Author: Omar Naifar

Publisher: Springer Nature

Published: 2022-02-01

Total Pages: 200

ISBN-13: 3030927318

DOWNLOAD EBOOK

This book discusses various methods for designing different kinds of observers, such as the Luenberger observer, unknown input observers, discontinuous observers, sliding mode observers, observers for impulsive systems, observers for nonlinear Takagi-Sugeno fuzzy systems, and observers for electrical machines. A hydraulic process system and a renewable energy system are provided as examples of applications.


Book Synopsis Advances in Observer Design and Observation for Nonlinear Systems by : Omar Naifar

Download or read book Advances in Observer Design and Observation for Nonlinear Systems written by Omar Naifar and published by Springer Nature. This book was released on 2022-02-01 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses various methods for designing different kinds of observers, such as the Luenberger observer, unknown input observers, discontinuous observers, sliding mode observers, observers for impulsive systems, observers for nonlinear Takagi-Sugeno fuzzy systems, and observers for electrical machines. A hydraulic process system and a renewable energy system are provided as examples of applications.


Observers in Control Systems

Observers in Control Systems

Author: George Ellis

Publisher: Elsevier

Published: 2002-10-16

Total Pages: 275

ISBN-13: 0080513018

DOWNLOAD EBOOK

Observers are digital algorithms that combine sensor outputs with knowledge of the system to provide results superior to traditional structures, which rely wholly on sensors. Observers have been used in selected industries for years, but most books explain them with complex mathematics. Observers in Control Systems uses intuitive discussion, software experiments, and supporting analysis to explain the advantages and disadvantages of observers. If you are working in controls and want to improve your control systems, observers could be the technology you need and this book will give you a clear, thorough explanation of how they work and how to use them. Control systems and devices have become the most essential part of nearly all mechanical systems, machines, devices and manufacturing systems throughout the world. Increasingly the efficiency of production, the reliability of output and increased energy savings are a direct result of the quality and deployment of the control system. A modern and essential tool within the engineer's kit is the Observer which helps improve the performance and reduce the cost of these systems. George Ellis is the author of the highly successful Control System Design Guide (Second Edition). Unlike most controls books, which are written by control theorists and academics, Ellis is a leading engineer, designer, author and lecturer working in industry directly with the users of industrial motion control systems. Observers in Control Systems is written for all professional engineers and is designed to be utilized without an in-depth background in control theory. This is a "real-world" book which will demonstrate how observers work and how they can improve your control system. It also shows how observers operate when conditions are not ideal and teaches the reader how to quickly tune an observer in a working system. Software Available online: A free updated and enhanced version of the author's popular Visual ModelQ allows the reader to practice the concepts with Visual ModelQ models on a PC. Based on a virtual laboratory, all key topics are demonstrated with more than twenty control system models. The models are written in Visual ModelQ ,and are available on the Internet to every reader with a PC. Teaches observers and Kalman filters from an intuitive perspective Explains how to reduce control system susceptibility to noise Shows how to design an adaptive controller based on estimating parameter variation using observers Shows how to improve a control system's ability to reject disturbances Key topics are demonstrated with PC-based models of control systems. The models are written in both MatLab® and ModelQ; models are available free of charge


Book Synopsis Observers in Control Systems by : George Ellis

Download or read book Observers in Control Systems written by George Ellis and published by Elsevier. This book was released on 2002-10-16 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Observers are digital algorithms that combine sensor outputs with knowledge of the system to provide results superior to traditional structures, which rely wholly on sensors. Observers have been used in selected industries for years, but most books explain them with complex mathematics. Observers in Control Systems uses intuitive discussion, software experiments, and supporting analysis to explain the advantages and disadvantages of observers. If you are working in controls and want to improve your control systems, observers could be the technology you need and this book will give you a clear, thorough explanation of how they work and how to use them. Control systems and devices have become the most essential part of nearly all mechanical systems, machines, devices and manufacturing systems throughout the world. Increasingly the efficiency of production, the reliability of output and increased energy savings are a direct result of the quality and deployment of the control system. A modern and essential tool within the engineer's kit is the Observer which helps improve the performance and reduce the cost of these systems. George Ellis is the author of the highly successful Control System Design Guide (Second Edition). Unlike most controls books, which are written by control theorists and academics, Ellis is a leading engineer, designer, author and lecturer working in industry directly with the users of industrial motion control systems. Observers in Control Systems is written for all professional engineers and is designed to be utilized without an in-depth background in control theory. This is a "real-world" book which will demonstrate how observers work and how they can improve your control system. It also shows how observers operate when conditions are not ideal and teaches the reader how to quickly tune an observer in a working system. Software Available online: A free updated and enhanced version of the author's popular Visual ModelQ allows the reader to practice the concepts with Visual ModelQ models on a PC. Based on a virtual laboratory, all key topics are demonstrated with more than twenty control system models. The models are written in Visual ModelQ ,and are available on the Internet to every reader with a PC. Teaches observers and Kalman filters from an intuitive perspective Explains how to reduce control system susceptibility to noise Shows how to design an adaptive controller based on estimating parameter variation using observers Shows how to improve a control system's ability to reject disturbances Key topics are demonstrated with PC-based models of control systems. The models are written in both MatLab® and ModelQ; models are available free of charge


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Book Synopsis Feedback Systems by : Karl Johan Åström

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory

Author: Christiaan Heij

Publisher: Springer Science & Business Media

Published: 2006-12-18

Total Pages: 169

ISBN-13: 3764375493

DOWNLOAD EBOOK

This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.


Book Synopsis Introduction to Mathematical Systems Theory by : Christiaan Heij

Download or read book Introduction to Mathematical Systems Theory written by Christiaan Heij and published by Springer Science & Business Media. This book was released on 2006-12-18 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.