Design Optimization of Unmanned Aerial Vehicles

Design Optimization of Unmanned Aerial Vehicles

Author: Athanasios Papageorgiou

Publisher: Linköping University Electronic Press

Published: 2019-11-13

Total Pages: 99

ISBN-13: 917519001X

DOWNLOAD EBOOK

Over the last years, Unmanned Aerial Vehicles (UAVs) have gradually become a more efficient alternative to manned aircraft, and at present, they are being deployed in a broad spectrum of both military as well as civilian missions. This has led to an unprecedented market expansion with new challenges for the aeronautical industry, and as a result, it has created a need to implement the latest design tools in order to achieve faster idea-to-market times and higher product performance. As a complex engineering product, UAVs are comprised of numerous sub-systems with intricate synergies and hidden dependencies. To this end, Multidisciplinary Design Optimization (MDO) is a method that can identify systems with better performance through the concurrent consideration of several engineering disciplines under a common framework. Nevertheless, there are still many limitations in MDO, and to this date, some of the most critical gaps can be found in the disciplinary modeling, in the analysis capabilities, and in the organizational integration of the method. As an aeronautical product, UAVs are also expected to work together with other systems and to perform in various operating environments. In this respect, System of Systems (SoS) models enable the exploration of design interactions in various missions, and hence, they allow decision makers to identify capabilities that are beyond those of each individual system. As expected, this significantly more complex formulation raises new challenges regarding the decomposition of the problem, while at the same time, it sets further requirements in terms of analyses and mission simulation. In this light, this thesis focuses on the design optimization of UAVs by enhancing the current MDO capabilities and by exploring the use of SoS models. Two literature reviews serve as the basis for identifying the gaps and trends in the field, and in turn, five case studies try to address them by proposing a set of expansions. On the whole, the problem is approached from a technical as well as an organizational point of view, and thus, this research aims to propose solutions that can lead to better performance and that are also meaningful to the Product Development Process (PDP). Having established the above foundation, this work delves firstly into MDO, and more specifically, it presents a framework that has been enhanced with further system models and analysis capabilities, efficient computing solutions, and data visualization tools. At a secondary level, this work addresses the topic of SoS, and in particular, it presents a multi-level decomposition strategy, multi-fidelity disciplinary models, and a mission simulation module. Overall, this thesis presents quantitative data which aim to illustrate the benefits of design optimization on the performance of UAVs, and it concludes with a qualitative assessment of the effects that the proposed methods and tools can have on both the PDP and the organization.


Book Synopsis Design Optimization of Unmanned Aerial Vehicles by : Athanasios Papageorgiou

Download or read book Design Optimization of Unmanned Aerial Vehicles written by Athanasios Papageorgiou and published by Linköping University Electronic Press. This book was released on 2019-11-13 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last years, Unmanned Aerial Vehicles (UAVs) have gradually become a more efficient alternative to manned aircraft, and at present, they are being deployed in a broad spectrum of both military as well as civilian missions. This has led to an unprecedented market expansion with new challenges for the aeronautical industry, and as a result, it has created a need to implement the latest design tools in order to achieve faster idea-to-market times and higher product performance. As a complex engineering product, UAVs are comprised of numerous sub-systems with intricate synergies and hidden dependencies. To this end, Multidisciplinary Design Optimization (MDO) is a method that can identify systems with better performance through the concurrent consideration of several engineering disciplines under a common framework. Nevertheless, there are still many limitations in MDO, and to this date, some of the most critical gaps can be found in the disciplinary modeling, in the analysis capabilities, and in the organizational integration of the method. As an aeronautical product, UAVs are also expected to work together with other systems and to perform in various operating environments. In this respect, System of Systems (SoS) models enable the exploration of design interactions in various missions, and hence, they allow decision makers to identify capabilities that are beyond those of each individual system. As expected, this significantly more complex formulation raises new challenges regarding the decomposition of the problem, while at the same time, it sets further requirements in terms of analyses and mission simulation. In this light, this thesis focuses on the design optimization of UAVs by enhancing the current MDO capabilities and by exploring the use of SoS models. Two literature reviews serve as the basis for identifying the gaps and trends in the field, and in turn, five case studies try to address them by proposing a set of expansions. On the whole, the problem is approached from a technical as well as an organizational point of view, and thus, this research aims to propose solutions that can lead to better performance and that are also meaningful to the Product Development Process (PDP). Having established the above foundation, this work delves firstly into MDO, and more specifically, it presents a framework that has been enhanced with further system models and analysis capabilities, efficient computing solutions, and data visualization tools. At a secondary level, this work addresses the topic of SoS, and in particular, it presents a multi-level decomposition strategy, multi-fidelity disciplinary models, and a mission simulation module. Overall, this thesis presents quantitative data which aim to illustrate the benefits of design optimization on the performance of UAVs, and it concludes with a qualitative assessment of the effects that the proposed methods and tools can have on both the PDP and the organization.


Wireless Communications and Networking for Unmanned Aerial Vehicles

Wireless Communications and Networking for Unmanned Aerial Vehicles

Author: Walid Saad

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 295

ISBN-13: 1108574041

DOWNLOAD EBOOK

A thorough treatment of UAV wireless communications and networking research challenges and opportunities. Detailed, step-by-step development of carefully selected research problems that pertain to UAV network performance analysis and optimization, physical layer design, trajectory path planning, resource management, multiple access, cooperative communications, standardization, control, and security is provided. Featuring discussion of practical applications including drone delivery systems, public safety, IoT, virtual reality, and smart cities, this is an essential tool for researchers, students, and engineers interested in broadening their knowledge of the deployment and operation of communication systems that integrate or rely on unmanned aerial vehicles.


Book Synopsis Wireless Communications and Networking for Unmanned Aerial Vehicles by : Walid Saad

Download or read book Wireless Communications and Networking for Unmanned Aerial Vehicles written by Walid Saad and published by Cambridge University Press. This book was released on 2020-04-02 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough treatment of UAV wireless communications and networking research challenges and opportunities. Detailed, step-by-step development of carefully selected research problems that pertain to UAV network performance analysis and optimization, physical layer design, trajectory path planning, resource management, multiple access, cooperative communications, standardization, control, and security is provided. Featuring discussion of practical applications including drone delivery systems, public safety, IoT, virtual reality, and smart cities, this is an essential tool for researchers, students, and engineers interested in broadening their knowledge of the deployment and operation of communication systems that integrate or rely on unmanned aerial vehicles.


Optimization of Unmanned Aerial Vehicles

Optimization of Unmanned Aerial Vehicles

Author: Athanasios Papageorgiou

Publisher:

Published: 2017

Total Pages:

ISBN-13: 9789176853917

DOWNLOAD EBOOK

Over the last decade, Unmanned Aerial Vehicles (UAVs) have experienced an accelerated growth, and nowadays they are being deployed in a variety of missions that have traditionally been covered by manned aircraft. This unprecedented market expansion has created new and unforeseen challenges for the manufacturing industry which is now called to further reduce the idea-to-market times while simultaneously delivering designs of even higher performance. In this environment of uncertainty and risk, it is without a doubt crucial for the involved actors to find ways to secure their strategic advantage, and hence, implementing the latest design tools has become a critical consideration in every Product Development Process (PDP). To this end, a method that has been frequently applied in the PDP and has shown many successful results in the development of complex engineering products is Multidisciplinary Design Optimization (MDO). In general, MDO can bring additional knowledge regarding the best-suited designs much earlier in the process, and in this respect, it can lead to significant cost and time savings by reducing the total number of refinement iterations. Nevertheless, the organizational and cultural integration of MDO has been often overlooked, while at the same time, several technical aspects of the method for UAV design are still at an elementary level. On the whole, research on MDO is showing a slow progress, and to this date, there are many limitations in both the disciplinary models and the available analysis capabilities. In light of the above, this thesis focuses on the particulars of the MDO methodology, and more specifically, on how it can be best adapted and evolved in order to enhance the development process of UAVs. The primary objective is to study the current trends and gaps of the MDO practices in UAV applications, and subsequently to build upon that and explore how these can be included in a roadmap that will be able to serve a guide for newcomers in the field. Compared to other studies, the problem is herein approached from both a technical as well as organizational perspective, and thus, this research not only aims to propose techniques that can lead to better designs but also solutions that will be meaningful to the PDP. Having established the above foundation, this work shows that the traditional MDO frameworks for UAV design have been neglecting several important features, and it elaborates on how those novel elements can be modeled in order to enable a better integration of MDO into the organizational functions. Overall, this thesis presents quantitative and qualitative data which illustrate the effectiveness of the new framework enhancements in the development process of UAVs, and concludes with discussions on the possible improvement directions towards achieving more and better MDO capabilities.


Book Synopsis Optimization of Unmanned Aerial Vehicles by : Athanasios Papageorgiou

Download or read book Optimization of Unmanned Aerial Vehicles written by Athanasios Papageorgiou and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last decade, Unmanned Aerial Vehicles (UAVs) have experienced an accelerated growth, and nowadays they are being deployed in a variety of missions that have traditionally been covered by manned aircraft. This unprecedented market expansion has created new and unforeseen challenges for the manufacturing industry which is now called to further reduce the idea-to-market times while simultaneously delivering designs of even higher performance. In this environment of uncertainty and risk, it is without a doubt crucial for the involved actors to find ways to secure their strategic advantage, and hence, implementing the latest design tools has become a critical consideration in every Product Development Process (PDP). To this end, a method that has been frequently applied in the PDP and has shown many successful results in the development of complex engineering products is Multidisciplinary Design Optimization (MDO). In general, MDO can bring additional knowledge regarding the best-suited designs much earlier in the process, and in this respect, it can lead to significant cost and time savings by reducing the total number of refinement iterations. Nevertheless, the organizational and cultural integration of MDO has been often overlooked, while at the same time, several technical aspects of the method for UAV design are still at an elementary level. On the whole, research on MDO is showing a slow progress, and to this date, there are many limitations in both the disciplinary models and the available analysis capabilities. In light of the above, this thesis focuses on the particulars of the MDO methodology, and more specifically, on how it can be best adapted and evolved in order to enhance the development process of UAVs. The primary objective is to study the current trends and gaps of the MDO practices in UAV applications, and subsequently to build upon that and explore how these can be included in a roadmap that will be able to serve a guide for newcomers in the field. Compared to other studies, the problem is herein approached from both a technical as well as organizational perspective, and thus, this research not only aims to propose techniques that can lead to better designs but also solutions that will be meaningful to the PDP. Having established the above foundation, this work shows that the traditional MDO frameworks for UAV design have been neglecting several important features, and it elaborates on how those novel elements can be modeled in order to enable a better integration of MDO into the organizational functions. Overall, this thesis presents quantitative and qualitative data which illustrate the effectiveness of the new framework enhancements in the development process of UAVs, and concludes with discussions on the possible improvement directions towards achieving more and better MDO capabilities.


Drones in Smart-Cities

Drones in Smart-Cities

Author: Fadi Al-Turjman

Publisher: Elsevier

Published: 2020-06-04

Total Pages: 240

ISBN-13: 0128204303

DOWNLOAD EBOOK

Drones in Smart-Cities: Security and Performance is the first book dedicated to drones in smart cities, helping address the many research challenges in bringing UAVs into practice. The book incorporates insights from the latest research in Internet of Things, big data, and cloud computing, 5G, and other communication technologies. It examines the design and implementation of UAV, focusing on data delivery, performability, and security. Intended for researchers, engineers, and practitioners, Drones in Smart-Cities: Security and Performance combines the technical aspects with academic theory to help implement the smart city vision around the globe. Addresses UAV and IoT for smart cities applications Examines topics as UAV safety, challenges, localization methods. QoS, simulation tools, and more Collect the relevant knowledge in one resource, saving research time and effort


Book Synopsis Drones in Smart-Cities by : Fadi Al-Turjman

Download or read book Drones in Smart-Cities written by Fadi Al-Turjman and published by Elsevier. This book was released on 2020-06-04 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drones in Smart-Cities: Security and Performance is the first book dedicated to drones in smart cities, helping address the many research challenges in bringing UAVs into practice. The book incorporates insights from the latest research in Internet of Things, big data, and cloud computing, 5G, and other communication technologies. It examines the design and implementation of UAV, focusing on data delivery, performability, and security. Intended for researchers, engineers, and practitioners, Drones in Smart-Cities: Security and Performance combines the technical aspects with academic theory to help implement the smart city vision around the globe. Addresses UAV and IoT for smart cities applications Examines topics as UAV safety, challenges, localization methods. QoS, simulation tools, and more Collect the relevant knowledge in one resource, saving research time and effort


Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles

Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles

Author: Jenna Elisabeth Newcomb

Publisher:

Published: 2019

Total Pages: 56

ISBN-13:

DOWNLOAD EBOOK

An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of searching a specified area than a single UAV or piloted plane. There are a variety of factors that affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and communication had on the swarm search performance. We used non-dimensionalization so the results can be applied to any domain size with any type of vehicle. We found that endurance was the most important factor. Vehicles with good endurance sensed approximately 90% to 100% of the grid, even when other properties were lacking. If the vehicles lacked endurance, the amount of area the vehicles could sense at a given time step became more important and 10% more of the grid was sensed with the increase in sensed area. The maneuverability of the vehicles was measured as the vehicles' radii of turn compared to the search domain size. The maneuverability mattered the most in the middle-range endurance cases. In some cases 30% more of the grid was searched with improving vehicle maneuverability. In addition, we also examined four communication cases with different amounts of information regarding vehicle location. We found communication increased search performance by at least 6.3%. However, increasing the amount of information only changed the performance by 2.3%. We also studied the impact the range of vehicle communication had on search performance. We found that simulations benefited most from increasing the communication range when the amount of area sensed at a given time step was small and the vehicles had good maneuverability. We also extended the optimization to a multi-objective process with the inclusion of target tracking. We analyzed how the different weightings of the objectives affected the performance outcomes. We found that target tracking performance dramatically changes based on the given weighting of each objective and saw an increase of approximately 52%. However, the amount of the grid that was sensed only dropped by approximately 10%.


Book Synopsis Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles by : Jenna Elisabeth Newcomb

Download or read book Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles written by Jenna Elisabeth Newcomb and published by . This book was released on 2019 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of searching a specified area than a single UAV or piloted plane. There are a variety of factors that affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and communication had on the swarm search performance. We used non-dimensionalization so the results can be applied to any domain size with any type of vehicle. We found that endurance was the most important factor. Vehicles with good endurance sensed approximately 90% to 100% of the grid, even when other properties were lacking. If the vehicles lacked endurance, the amount of area the vehicles could sense at a given time step became more important and 10% more of the grid was sensed with the increase in sensed area. The maneuverability of the vehicles was measured as the vehicles' radii of turn compared to the search domain size. The maneuverability mattered the most in the middle-range endurance cases. In some cases 30% more of the grid was searched with improving vehicle maneuverability. In addition, we also examined four communication cases with different amounts of information regarding vehicle location. We found communication increased search performance by at least 6.3%. However, increasing the amount of information only changed the performance by 2.3%. We also studied the impact the range of vehicle communication had on search performance. We found that simulations benefited most from increasing the communication range when the amount of area sensed at a given time step was small and the vehicles had good maneuverability. We also extended the optimization to a multi-objective process with the inclusion of target tracking. We analyzed how the different weightings of the objectives affected the performance outcomes. We found that target tracking performance dramatically changes based on the given weighting of each objective and saw an increase of approximately 52%. However, the amount of the grid that was sensed only dropped by approximately 10%.


Bio-inspired Computation in Unmanned Aerial Vehicles

Bio-inspired Computation in Unmanned Aerial Vehicles

Author: Haibin Duan

Publisher: Springer Science & Business Media

Published: 2014-01-02

Total Pages: 285

ISBN-13: 3642411967

DOWNLOAD EBOOK

Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aerospace Technology and Astronautics, especially those interested in artificial intelligence and Unmanned Aerial Vehicles. Professor Haibin Duan and Dr. Pei Li, both work at Beihang University (formerly Beijing University of Aeronautics & Astronautics, BUAA). Prof Duan's academic website is: http://hbduan.buaa.edu.cn


Book Synopsis Bio-inspired Computation in Unmanned Aerial Vehicles by : Haibin Duan

Download or read book Bio-inspired Computation in Unmanned Aerial Vehicles written by Haibin Duan and published by Springer Science & Business Media. This book was released on 2014-01-02 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aerospace Technology and Astronautics, especially those interested in artificial intelligence and Unmanned Aerial Vehicles. Professor Haibin Duan and Dr. Pei Li, both work at Beihang University (formerly Beijing University of Aeronautics & Astronautics, BUAA). Prof Duan's academic website is: http://hbduan.buaa.edu.cn


Cooperative Control: Models, Applications and Algorithms

Cooperative Control: Models, Applications and Algorithms

Author: Sergiy Butenko

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 365

ISBN-13: 1475737580

DOWNLOAD EBOOK

During the last decades, considerable progress has been observed in all aspects regarding the study of cooperative systems including modeling of cooperative systems, resource allocation, discrete event driven dynamical control, continuous and hybrid dynamical control, and theory of the interaction of information, control, and hierarchy. Solution methods have been proposed using control and optimization approaches, emergent rule based techniques, game theoretic and team theoretic approaches. Measures of performance have been suggested that include the effects of hierarchies and information structures on solutions, performance bounds, concepts of convergence and stability, and problem complexity. These and other topics were discusses at the Second Annual Conference on Cooperative Control and Optimization in Gainesville, Florida. Refereed papers written by selected conference participants from the conference are gathered in this volume, which presents problem models, theoretical results, and algorithms for various aspects of cooperative control. Audience: The book is addressed to faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.


Book Synopsis Cooperative Control: Models, Applications and Algorithms by : Sergiy Butenko

Download or read book Cooperative Control: Models, Applications and Algorithms written by Sergiy Butenko and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, considerable progress has been observed in all aspects regarding the study of cooperative systems including modeling of cooperative systems, resource allocation, discrete event driven dynamical control, continuous and hybrid dynamical control, and theory of the interaction of information, control, and hierarchy. Solution methods have been proposed using control and optimization approaches, emergent rule based techniques, game theoretic and team theoretic approaches. Measures of performance have been suggested that include the effects of hierarchies and information structures on solutions, performance bounds, concepts of convergence and stability, and problem complexity. These and other topics were discusses at the Second Annual Conference on Cooperative Control and Optimization in Gainesville, Florida. Refereed papers written by selected conference participants from the conference are gathered in this volume, which presents problem models, theoretical results, and algorithms for various aspects of cooperative control. Audience: The book is addressed to faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.


A Simulation Optimization Approach to the Design of Unmanned Aerial Vehicles

A Simulation Optimization Approach to the Design of Unmanned Aerial Vehicles

Author: Emily C. Evans

Publisher:

Published: 2008

Total Pages: 140

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis A Simulation Optimization Approach to the Design of Unmanned Aerial Vehicles by : Emily C. Evans

Download or read book A Simulation Optimization Approach to the Design of Unmanned Aerial Vehicles written by Emily C. Evans and published by . This book was released on 2008 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Unmanned Aerial Vehicles in Smart Cities

Unmanned Aerial Vehicles in Smart Cities

Author: Fadi Al-Turjman

Publisher: Springer

Published: 2020-05-19

Total Pages: 187

ISBN-13: 9783030387112

DOWNLOAD EBOOK

This book addresses the major challenges in realizing unmanned aerial vehicles (UAVs) in IoT-based Smart Cities. The challenges tackled vary from cost and energy efficiency to availability and service quality. The aim of this book is to focus on both the design and implementation aspects of the UAV-based approaches in IoT-enabled smart cities’ applications that are enabled and supported by wireless sensor networks, 5G, and beyond. The contributors mainly focus on data delivery approaches and their performability aspects. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via wireless/wired enabling technologies. Involves the most up to date unmanned aerial vehicles (UAV) assessment and evaluation approaches Includes innovative operational ideas in agriculture, surveillance, rescue, etc. Pertains researchers, scientists, engineers and practitioners in the field of smart cities, IoT, and communications Fadi Al-Turjman received his Ph.D. from Queen’s University, Canada. He is a full professor and a research center director at Near East University, Nicosia. He is a leading authority in the area of IoT and intelligent systems. His publication history spans over 250 publications inaddition to his editorialship in top journals such as the IEEE Communication Surveys and Tutorials, and the Elsevier Sustaibable Cities and Sociaty.


Book Synopsis Unmanned Aerial Vehicles in Smart Cities by : Fadi Al-Turjman

Download or read book Unmanned Aerial Vehicles in Smart Cities written by Fadi Al-Turjman and published by Springer. This book was released on 2020-05-19 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the major challenges in realizing unmanned aerial vehicles (UAVs) in IoT-based Smart Cities. The challenges tackled vary from cost and energy efficiency to availability and service quality. The aim of this book is to focus on both the design and implementation aspects of the UAV-based approaches in IoT-enabled smart cities’ applications that are enabled and supported by wireless sensor networks, 5G, and beyond. The contributors mainly focus on data delivery approaches and their performability aspects. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via wireless/wired enabling technologies. Involves the most up to date unmanned aerial vehicles (UAV) assessment and evaluation approaches Includes innovative operational ideas in agriculture, surveillance, rescue, etc. Pertains researchers, scientists, engineers and practitioners in the field of smart cities, IoT, and communications Fadi Al-Turjman received his Ph.D. from Queen’s University, Canada. He is a full professor and a research center director at Near East University, Nicosia. He is a leading authority in the area of IoT and intelligent systems. His publication history spans over 250 publications inaddition to his editorialship in top journals such as the IEEE Communication Surveys and Tutorials, and the Elsevier Sustaibable Cities and Sociaty.


Optimization-based Spatial Positioning and Energy Management for Unmanned Aerial Vehicles

Optimization-based Spatial Positioning and Energy Management for Unmanned Aerial Vehicles

Author: Ronald Abraham Martin

Publisher:

Published: 2018

Total Pages: 140

ISBN-13:

DOWNLOAD EBOOK

This research applies from the field of optimization to spatial positioning and energy management in Unmanned Aerial Vehicles (UAVs). Two specific areas are treated: optimization of UAV view plans for 3D modeling of infrastructure, and trajectory optimization of solar powered high-altitude long endurance (HALE) UAVs.


Book Synopsis Optimization-based Spatial Positioning and Energy Management for Unmanned Aerial Vehicles by : Ronald Abraham Martin

Download or read book Optimization-based Spatial Positioning and Energy Management for Unmanned Aerial Vehicles written by Ronald Abraham Martin and published by . This book was released on 2018 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research applies from the field of optimization to spatial positioning and energy management in Unmanned Aerial Vehicles (UAVs). Two specific areas are treated: optimization of UAV view plans for 3D modeling of infrastructure, and trajectory optimization of solar powered high-altitude long endurance (HALE) UAVs.