Orbital Mechanics and Formation Flying

Orbital Mechanics and Formation Flying

Author: P A Capó-Lugo

Publisher: Elsevier

Published: 2011-10-04

Total Pages: 453

ISBN-13: 0857093878

DOWNLOAD EBOOK

Aimed at students, faculty and professionals in the aerospace field, this book provides practical information on the development, analysis, and control of a single and/or multiple spacecraft in space. This book is divided into two major sections: single and multiple satellite motion. The first section analyses the orbital mechanics, orbital perturbations, and attitude dynamics of a single satellite around the Earth. Using the knowledge of a single satellite motion, the translation of a group of satellites called formation flying or constellation is explained. Formation flying has been one of the main research topics over the last few years and this book explains different control approaches to control the satellite attitude motion and/or to maintain the constellation together. The control schemes are explained in the discrete domain such that it can be easily implemented on the computer on board the satellite. The key objective of this book is to show the reader the practical and the implementation process in the discrete domain. Explains the orbital motion and principal perturbations affecting the satellite Uses the Ares V rocket as an example to explain the attitude motion of a space vehicle Presents the practical approach for different control actuators that can be used in a satellite


Book Synopsis Orbital Mechanics and Formation Flying by : P A Capó-Lugo

Download or read book Orbital Mechanics and Formation Flying written by P A Capó-Lugo and published by Elsevier. This book was released on 2011-10-04 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at students, faculty and professionals in the aerospace field, this book provides practical information on the development, analysis, and control of a single and/or multiple spacecraft in space. This book is divided into two major sections: single and multiple satellite motion. The first section analyses the orbital mechanics, orbital perturbations, and attitude dynamics of a single satellite around the Earth. Using the knowledge of a single satellite motion, the translation of a group of satellites called formation flying or constellation is explained. Formation flying has been one of the main research topics over the last few years and this book explains different control approaches to control the satellite attitude motion and/or to maintain the constellation together. The control schemes are explained in the discrete domain such that it can be easily implemented on the computer on board the satellite. The key objective of this book is to show the reader the practical and the implementation process in the discrete domain. Explains the orbital motion and principal perturbations affecting the satellite Uses the Ares V rocket as an example to explain the attitude motion of a space vehicle Presents the practical approach for different control actuators that can be used in a satellite


Spacecraft Formation Flying

Spacecraft Formation Flying

Author: Kyle Alfriend

Publisher: Elsevier

Published: 2009-11-16

Total Pages: 403

ISBN-13: 0080559654

DOWNLOAD EBOOK

Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier’s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation


Book Synopsis Spacecraft Formation Flying by : Kyle Alfriend

Download or read book Spacecraft Formation Flying written by Kyle Alfriend and published by Elsevier. This book was released on 2009-11-16 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier’s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation


Spacecraft Formation Flying

Spacecraft Formation Flying

Author: Pini Gurfil

Publisher: Butterworth-Heinemann

Published: 2010

Total Pages: 382

ISBN-13: 9780750685337

DOWNLOAD EBOOK

Spacecraft formation flying (SFF) is of huge importance to the aerospace and space community. Not the stuff of science-fiction, SFF involves flying multiple small satellites together, to deliver benefits which far outweigh a single larger craft or space station. The first autonomous formation flying earth science mission was in 196 and NASA now has 35 SFF mission sets. By networking several smaller and cheaper craft, scientists can make simultaneous measurements that enable higher resolution astronomical imagery, provide robust and fault-tolerant spacecraft system architectures, and enable complex earth science and space science networks dispersed over clusters of satellites in space. This is the first book to introduce and explore SFF. It is a topic of enormous importance to aerospace engineers, astrodynamicists, satellite engineers, astronomers, physicists, and applied mathematicions. This book provides a complete introduction to the subject and is supported by graduate level student exercises plus Matlab and Maple code sets for running SFF simulations. * The first book dedicated to spacecraft formation flying which is the enabling element of distributed spacecraft systems * Written by the leading researchers and teachers in the field; perfect for research and graduate students * Accompanied by Matlab and Maple code sets and exercises for graduate level students of aerospace science, astrodynamics and orbital mechanics.


Book Synopsis Spacecraft Formation Flying by : Pini Gurfil

Download or read book Spacecraft Formation Flying written by Pini Gurfil and published by Butterworth-Heinemann. This book was released on 2010 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spacecraft formation flying (SFF) is of huge importance to the aerospace and space community. Not the stuff of science-fiction, SFF involves flying multiple small satellites together, to deliver benefits which far outweigh a single larger craft or space station. The first autonomous formation flying earth science mission was in 196 and NASA now has 35 SFF mission sets. By networking several smaller and cheaper craft, scientists can make simultaneous measurements that enable higher resolution astronomical imagery, provide robust and fault-tolerant spacecraft system architectures, and enable complex earth science and space science networks dispersed over clusters of satellites in space. This is the first book to introduce and explore SFF. It is a topic of enormous importance to aerospace engineers, astrodynamicists, satellite engineers, astronomers, physicists, and applied mathematicions. This book provides a complete introduction to the subject and is supported by graduate level student exercises plus Matlab and Maple code sets for running SFF simulations. * The first book dedicated to spacecraft formation flying which is the enabling element of distributed spacecraft systems * Written by the leading researchers and teachers in the field; perfect for research and graduate students * Accompanied by Matlab and Maple code sets and exercises for graduate level students of aerospace science, astrodynamics and orbital mechanics.


Advanced Engineering Design

Advanced Engineering Design

Author: Efrén M Benavides

Publisher: Elsevier

Published: 2011-11-24

Total Pages: 283

ISBN-13: 0857095048

DOWNLOAD EBOOK

This book provides engineers and students with a general framework focusing on the processes of designing new engineering products. The procedures covered by the framework lead the reader to the best trade-offs to ensure maximum satisfaction of the customer’s needs, meeting the lowest cost expectations, ensuring the lowest environmental impact and maximising profits and best positioning in the marketplace. Chapters discuss the engineering tools that are compatible with these goals and sustainable activity. The design process is defined in terms of operators acting over the information space The information content is defined as a difference of entropies Creation and destruction of entropy are defined as procedures of the design process


Book Synopsis Advanced Engineering Design by : Efrén M Benavides

Download or read book Advanced Engineering Design written by Efrén M Benavides and published by Elsevier. This book was released on 2011-11-24 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides engineers and students with a general framework focusing on the processes of designing new engineering products. The procedures covered by the framework lead the reader to the best trade-offs to ensure maximum satisfaction of the customer’s needs, meeting the lowest cost expectations, ensuring the lowest environmental impact and maximising profits and best positioning in the marketplace. Chapters discuss the engineering tools that are compatible with these goals and sustainable activity. The design process is defined in terms of operators acting over the information space The information content is defined as a difference of entropies Creation and destruction of entropy are defined as procedures of the design process


Aerodynamic Measurements

Aerodynamic Measurements

Author: G P Russo

Publisher: Elsevier

Published: 2011-10-04

Total Pages: 283

ISBN-13: 085709386X

DOWNLOAD EBOOK

Aerodynamic measurements presents a comprehensive review of the theoretical bases on which experimental techniques used in aerodynamics are based. Limitations of each method in terms of accuracy, response time and complexity are addressed. This book serves as a guide to choosing the most pertinent technique for each type of flow field including: 1D, 2D, 3D, steady or unsteady, subsonic, supersonic or hypersonic. No book currently presents as many techniques as are presented in this volume. They are usually available in only a short course or in proprietary booklets Offers a critical review of the various methods of aerodynamic measurement and helps guide the reader to choose the most appropriate in each case Describes the evolution of specific techniques from old-fashioned mechanical processes to modern computerized versions aiding students and practitioners to understand results of their findings


Book Synopsis Aerodynamic Measurements by : G P Russo

Download or read book Aerodynamic Measurements written by G P Russo and published by Elsevier. This book was released on 2011-10-04 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamic measurements presents a comprehensive review of the theoretical bases on which experimental techniques used in aerodynamics are based. Limitations of each method in terms of accuracy, response time and complexity are addressed. This book serves as a guide to choosing the most pertinent technique for each type of flow field including: 1D, 2D, 3D, steady or unsteady, subsonic, supersonic or hypersonic. No book currently presents as many techniques as are presented in this volume. They are usually available in only a short course or in proprietary booklets Offers a critical review of the various methods of aerodynamic measurement and helps guide the reader to choose the most appropriate in each case Describes the evolution of specific techniques from old-fashioned mechanical processes to modern computerized versions aiding students and practitioners to understand results of their findings


Satellite Formation Flying

Satellite Formation Flying

Author: S. Mathavaraj

Publisher: Springer Nature

Published: 2021-04-16

Total Pages: 154

ISBN-13: 981159631X

DOWNLOAD EBOOK

Small satellite technology is opening up a new era in space exploration offering reduced cost of launch and maintenance, operational flexibility with on-orbit reconfiguration, redundancy etc. The true power of such missions can be harnessed only from close and precise formation flying of satellites. Formation flying missions support diverse application areas such as reconnaissance, remote sensing, solar observatory, deep space observatories, etc. A key component involved in formation flying is the guidance algorithm that should account for system nonlinearities and unknown disturbances. The main focus of this book is to present various nonlinear optimal control and adaptive guidance ideas to ensure precise close formation flying in presence of such difficulties. In addition to in-depth discussion of the relevant topics, MATLAB program files for the results included are also provided for the benefit of the readers. Since this book has concise information about the various guidance techniques, it will be useful reference for researchers and practising engineers in the space field.


Book Synopsis Satellite Formation Flying by : S. Mathavaraj

Download or read book Satellite Formation Flying written by S. Mathavaraj and published by Springer Nature. This book was released on 2021-04-16 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small satellite technology is opening up a new era in space exploration offering reduced cost of launch and maintenance, operational flexibility with on-orbit reconfiguration, redundancy etc. The true power of such missions can be harnessed only from close and precise formation flying of satellites. Formation flying missions support diverse application areas such as reconnaissance, remote sensing, solar observatory, deep space observatories, etc. A key component involved in formation flying is the guidance algorithm that should account for system nonlinearities and unknown disturbances. The main focus of this book is to present various nonlinear optimal control and adaptive guidance ideas to ensure precise close formation flying in presence of such difficulties. In addition to in-depth discussion of the relevant topics, MATLAB program files for the results included are also provided for the benefit of the readers. Since this book has concise information about the various guidance techniques, it will be useful reference for researchers and practising engineers in the space field.


Satellite Formation Flying

Satellite Formation Flying

Author: Danwei Wang

Publisher: Springer

Published: 2016-10-24

Total Pages: 205

ISBN-13: 9811023832

DOWNLOAD EBOOK

This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.


Book Synopsis Satellite Formation Flying by : Danwei Wang

Download or read book Satellite Formation Flying written by Danwei Wang and published by Springer. This book was released on 2016-10-24 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.


Optimal Space Flight Navigation

Optimal Space Flight Navigation

Author: Ashish Tewari

Publisher: Birkhäuser

Published: 2019-01-14

Total Pages: 0

ISBN-13: 9783030037888

DOWNLOAD EBOOK

This book consolidates decades of knowledge on space flight navigation theory, which has thus far been spread across various research articles. By gathering this research into a single text, it will be more accessible to students curious about the study of space flight navigation. Books on optimal control theory and orbital mechanics have not adequately explored the field of space flight navigation theory until this point. The opening chapters introduce essential concepts within optimal control theory, such as the optimization of static systems, special boundary conditions, and dynamic equality constraints. An analytical approach is focused on throughout, as opposed to computational. The result is a book that emphasizes simplicity and practicability, which makes it accessible and engaging. This holds true in later chapters that involve orbital mechanics, two-body maneuvers, bounded inputs, and flight in non-spherical gravity fields. The intended audience is primarily upper-undergraduate students, graduate students, and researchers of aerospace, mechanical, and/or electrical engineering. It will be especially valuable to those with interests in spacecraft dynamics and control. Readers should be familiar with basic dynamics and modern control theory. Additionally, a knowledge of linear algebra, variational methods, and ordinary differential equations is recommended.


Book Synopsis Optimal Space Flight Navigation by : Ashish Tewari

Download or read book Optimal Space Flight Navigation written by Ashish Tewari and published by Birkhäuser. This book was released on 2019-01-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consolidates decades of knowledge on space flight navigation theory, which has thus far been spread across various research articles. By gathering this research into a single text, it will be more accessible to students curious about the study of space flight navigation. Books on optimal control theory and orbital mechanics have not adequately explored the field of space flight navigation theory until this point. The opening chapters introduce essential concepts within optimal control theory, such as the optimization of static systems, special boundary conditions, and dynamic equality constraints. An analytical approach is focused on throughout, as opposed to computational. The result is a book that emphasizes simplicity and practicability, which makes it accessible and engaging. This holds true in later chapters that involve orbital mechanics, two-body maneuvers, bounded inputs, and flight in non-spherical gravity fields. The intended audience is primarily upper-undergraduate students, graduate students, and researchers of aerospace, mechanical, and/or electrical engineering. It will be especially valuable to those with interests in spacecraft dynamics and control. Readers should be familiar with basic dynamics and modern control theory. Additionally, a knowledge of linear algebra, variational methods, and ordinary differential equations is recommended.


Low Energy Flight: Orbital Dynamics and Mission Trajectory Design

Low Energy Flight: Orbital Dynamics and Mission Trajectory Design

Author: Jianping Yuan

Publisher: Springer

Published: 2019-03-19

Total Pages: 209

ISBN-13: 9811361304

DOWNLOAD EBOOK

The book focuses on the orbital dynamics and mission trajectory (transfer or target trajectory) design of low-energy flight in the context of modern astrodynamics. It investigates various topics that either offer new methods for solving classical problems or address emerging problems that have yet to be studied, including low-thrust transfer trajectory design using the virtual gravity field method; transfer in the three-body system using invariant manifolds; formation flying under space-borne artificial magnetic fields; and the orbital dynamics of highly irregular asteroids. It also features an extensive study of the orbital dynamics in the vicinity of contact binary asteroids, including the 1:1 ground-track resonance, the equilibrium points and their stability, and the third-order analytical solution of orbital motion in the vicinity of the non-collinear equilibrium point. Given its breadth of coverage, the book offers a valuable reference guide for all engineers and researchers interested in the potential applications of low-energy space missions.


Book Synopsis Low Energy Flight: Orbital Dynamics and Mission Trajectory Design by : Jianping Yuan

Download or read book Low Energy Flight: Orbital Dynamics and Mission Trajectory Design written by Jianping Yuan and published by Springer. This book was released on 2019-03-19 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the orbital dynamics and mission trajectory (transfer or target trajectory) design of low-energy flight in the context of modern astrodynamics. It investigates various topics that either offer new methods for solving classical problems or address emerging problems that have yet to be studied, including low-thrust transfer trajectory design using the virtual gravity field method; transfer in the three-body system using invariant manifolds; formation flying under space-borne artificial magnetic fields; and the orbital dynamics of highly irregular asteroids. It also features an extensive study of the orbital dynamics in the vicinity of contact binary asteroids, including the 1:1 ground-track resonance, the equilibrium points and their stability, and the third-order analytical solution of orbital motion in the vicinity of the non-collinear equilibrium point. Given its breadth of coverage, the book offers a valuable reference guide for all engineers and researchers interested in the potential applications of low-energy space missions.


Spacecraft Dynamics and Control

Spacecraft Dynamics and Control

Author: Anton H. de Ruiter

Publisher: John Wiley & Sons

Published: 2012-12-05

Total Pages: 562

ISBN-13: 1118403320

DOWNLOAD EBOOK

Provides the basics of spacecraft orbital dynamics plus attitude dynamics and control, using vectrix notation Spacecraft Dynamics and Control: An Introduction presents the fundamentals of classical control in the context of spacecraft attitude control. This approach is particularly beneficial for the training of students in both of the subjects of classical control as well as its application to spacecraft attitude control. By using a physical system (a spacecraft) that the reader can visualize (rather than arbitrary transfer functions), it is easier to grasp the motivation for why topics in control theory are important, as well as the theory behind them. The entire treatment of both orbital and attitude dynamics makes use of vectrix notation, which is a tool that allows the user to write down any vector equation of motion without consideration of a reference frame. This is particularly suited to the treatment of multiple reference frames. Vectrix notation also makes a very clear distinction between a physical vector and its coordinate representation in a reference frame. This is very important in spacecraft dynamics and control problems, where often multiple coordinate representations are used (in different reference frames) for the same physical vector. Provides an accessible, practical aid for teaching and self-study with a layout enabling a fundamental understanding of the subject Fills a gap in the existing literature by providing an analytical toolbox offering the reader a lasting, rigorous methodology for approaching vector mechanics, a key element vital to new graduates and practicing engineers alike Delivers an outstanding resource for aerospace engineering students, and all those involved in the technical aspects of design and engineering in the space sector Contains numerous illustrations to accompany the written text. Problems are included to apply and extend the material in each chapter Essential reading for graduate level aerospace engineering students, aerospace professionals, researchers and engineers.


Book Synopsis Spacecraft Dynamics and Control by : Anton H. de Ruiter

Download or read book Spacecraft Dynamics and Control written by Anton H. de Ruiter and published by John Wiley & Sons. This book was released on 2012-12-05 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides the basics of spacecraft orbital dynamics plus attitude dynamics and control, using vectrix notation Spacecraft Dynamics and Control: An Introduction presents the fundamentals of classical control in the context of spacecraft attitude control. This approach is particularly beneficial for the training of students in both of the subjects of classical control as well as its application to spacecraft attitude control. By using a physical system (a spacecraft) that the reader can visualize (rather than arbitrary transfer functions), it is easier to grasp the motivation for why topics in control theory are important, as well as the theory behind them. The entire treatment of both orbital and attitude dynamics makes use of vectrix notation, which is a tool that allows the user to write down any vector equation of motion without consideration of a reference frame. This is particularly suited to the treatment of multiple reference frames. Vectrix notation also makes a very clear distinction between a physical vector and its coordinate representation in a reference frame. This is very important in spacecraft dynamics and control problems, where often multiple coordinate representations are used (in different reference frames) for the same physical vector. Provides an accessible, practical aid for teaching and self-study with a layout enabling a fundamental understanding of the subject Fills a gap in the existing literature by providing an analytical toolbox offering the reader a lasting, rigorous methodology for approaching vector mechanics, a key element vital to new graduates and practicing engineers alike Delivers an outstanding resource for aerospace engineering students, and all those involved in the technical aspects of design and engineering in the space sector Contains numerous illustrations to accompany the written text. Problems are included to apply and extend the material in each chapter Essential reading for graduate level aerospace engineering students, aerospace professionals, researchers and engineers.