Order and Chaos in Nonlinear Physical Systems

Order and Chaos in Nonlinear Physical Systems

Author: Stig Lundqvist

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 482

ISBN-13: 1489920587

DOWNLOAD EBOOK

This volume is concerned with the theoretical description of patterns and instabilities and their relevance to physics, chemistry, and biology. More specifically, the theme of the work is the theory of nonlinear physical systems with emphasis on the mechanisms leading to the appearance of regular patterns of ordered behavior and chaotic patterns of stochastic behavior. The aim is to present basic concepts and current problems from a variety of points of view. In spite of the emphasis on concepts, some effort has been made to bring together experimental observations and theoretical mechanisms to provide a basic understanding of the aspects of the behavior of nonlinear systems which have a measure of generality. Chaos theory has become a real challenge to physicists with very different interests and also in many other disciplines, of which astronomy, chemistry, medicine, meteorology, economics, and social theory are already embraced at the time of writing. The study of chaos-related phenomena has a truly interdisciplinary charac ter and makes use of important concepts and methods from other disciplines. As one important example, for the description of chaotic structures the branch of mathematics called fractal geometry (associated particularly with the name of Mandelbrot) has proved invaluable. For the discussion of the richness of ordered structures which appear, one relies on the theory of pattern recognition. It is relevant to mention that, to date, computer studies have greatly aided the analysis of theoretical models describing chaos.


Book Synopsis Order and Chaos in Nonlinear Physical Systems by : Stig Lundqvist

Download or read book Order and Chaos in Nonlinear Physical Systems written by Stig Lundqvist and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the theoretical description of patterns and instabilities and their relevance to physics, chemistry, and biology. More specifically, the theme of the work is the theory of nonlinear physical systems with emphasis on the mechanisms leading to the appearance of regular patterns of ordered behavior and chaotic patterns of stochastic behavior. The aim is to present basic concepts and current problems from a variety of points of view. In spite of the emphasis on concepts, some effort has been made to bring together experimental observations and theoretical mechanisms to provide a basic understanding of the aspects of the behavior of nonlinear systems which have a measure of generality. Chaos theory has become a real challenge to physicists with very different interests and also in many other disciplines, of which astronomy, chemistry, medicine, meteorology, economics, and social theory are already embraced at the time of writing. The study of chaos-related phenomena has a truly interdisciplinary charac ter and makes use of important concepts and methods from other disciplines. As one important example, for the description of chaotic structures the branch of mathematics called fractal geometry (associated particularly with the name of Mandelbrot) has proved invaluable. For the discussion of the richness of ordered structures which appear, one relies on the theory of pattern recognition. It is relevant to mention that, to date, computer studies have greatly aided the analysis of theoretical models describing chaos.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Book Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz

Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Fractional-Order Nonlinear Systems

Fractional-Order Nonlinear Systems

Author: Ivo Petráš

Publisher: Springer Science & Business Media

Published: 2011-05-30

Total Pages: 218

ISBN-13: 3642181015

DOWNLOAD EBOOK

"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.


Book Synopsis Fractional-Order Nonlinear Systems by : Ivo Petráš

Download or read book Fractional-Order Nonlinear Systems written by Ivo Petráš and published by Springer Science & Business Media. This book was released on 2011-05-30 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.


Order Out of Chaos

Order Out of Chaos

Author: Ilya Prigogine

Publisher: Verso Books

Published: 2018-01-23

Total Pages: 384

ISBN-13: 1786631024

DOWNLOAD EBOOK

A pioneering book that shows how the two great themes of classic science, order and chaos, are being reconciled in a new and unexpected synthesis Order Out of Chaos is a sweeping critique of the discordant landscape of modern scientific knowledge. In this landmark book, Nobel Laureate Ilya Prigogine and acclaimed philosopher Isabelle Stengers offer an exciting and accessible account of the philosophical implications of thermodynamics. Prigogine and Stengers bring contradictory philosophies of time and chance into a novel and ambitious synthesis. Since its first publication in France in 1978, this book has sparked debate among physicists, philosophers, literary critics and historians.


Book Synopsis Order Out of Chaos by : Ilya Prigogine

Download or read book Order Out of Chaos written by Ilya Prigogine and published by Verso Books. This book was released on 2018-01-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneering book that shows how the two great themes of classic science, order and chaos, are being reconciled in a new and unexpected synthesis Order Out of Chaos is a sweeping critique of the discordant landscape of modern scientific knowledge. In this landmark book, Nobel Laureate Ilya Prigogine and acclaimed philosopher Isabelle Stengers offer an exciting and accessible account of the philosophical implications of thermodynamics. Prigogine and Stengers bring contradictory philosophies of time and chance into a novel and ambitious synthesis. Since its first publication in France in 1978, this book has sparked debate among physicists, philosophers, literary critics and historians.


Chaotic Dynamics of Nonlinear Systems

Chaotic Dynamics of Nonlinear Systems

Author: S. Neil Rasband

Publisher: Courier Dover Publications

Published: 2015-08-19

Total Pages: 244

ISBN-13: 0486795993

DOWNLOAD EBOOK

Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.


Book Synopsis Chaotic Dynamics of Nonlinear Systems by : S. Neil Rasband

Download or read book Chaotic Dynamics of Nonlinear Systems written by S. Neil Rasband and published by Courier Dover Publications. This book was released on 2015-08-19 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H Strogatz

Publisher: CRC Press

Published: 2024-01-16

Total Pages: 616

ISBN-13: 042967628X

DOWNLOAD EBOOK

The goal of this third edition of Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering is the same as previous editions: to provide a good foundation - and a joyful experience - for anyone who’d like to learn about nonlinear dynamics and chaos from an applied perspective. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors. The prerequisites are comfort with multivariable calculus and linear algebra, as well as a first course in physics. Ideas from probability, complex analysis, and Fourier analysis are invoked, but they're either worked out from scratch or can be safely skipped (or accepted on faith). Changes to this edition include substantial exercises about conceptual models of climate change, an updated treatment of the SIR model of epidemics, and amendments (based on recent research) about the Selkov model of oscillatory glycolysis. Equations, diagrams, and every word has been reconsidered and often revised. There are also about 50 new references, many of them from the recent literature. The most notable change is a new chapter. Chapter 13 is about the Kuramoto model. The Kuramoto model is an icon of nonlinear dynamics. Introduced in 1975 by the Japanese physicist Yoshiki Kuramoto, his elegant model is one of the rare examples of a high-dimensional nonlinear system that can be solved by elementary means. Students and teachers have embraced the book in the past, its general approach and framework continue to be sound.


Book Synopsis Nonlinear Dynamics and Chaos by : Steven H Strogatz

Download or read book Nonlinear Dynamics and Chaos written by Steven H Strogatz and published by CRC Press. This book was released on 2024-01-16 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this third edition of Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering is the same as previous editions: to provide a good foundation - and a joyful experience - for anyone who’d like to learn about nonlinear dynamics and chaos from an applied perspective. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors. The prerequisites are comfort with multivariable calculus and linear algebra, as well as a first course in physics. Ideas from probability, complex analysis, and Fourier analysis are invoked, but they're either worked out from scratch or can be safely skipped (or accepted on faith). Changes to this edition include substantial exercises about conceptual models of climate change, an updated treatment of the SIR model of epidemics, and amendments (based on recent research) about the Selkov model of oscillatory glycolysis. Equations, diagrams, and every word has been reconsidered and often revised. There are also about 50 new references, many of them from the recent literature. The most notable change is a new chapter. Chapter 13 is about the Kuramoto model. The Kuramoto model is an icon of nonlinear dynamics. Introduced in 1975 by the Japanese physicist Yoshiki Kuramoto, his elegant model is one of the rare examples of a high-dimensional nonlinear system that can be solved by elementary means. Students and teachers have embraced the book in the past, its general approach and framework continue to be sound.


Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 860

ISBN-13: 0387217495

DOWNLOAD EBOOK

This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik


Book Synopsis Introduction to Applied Nonlinear Dynamical Systems and Chaos by : Stephen Wiggins

Download or read book Introduction to Applied Nonlinear Dynamical Systems and Chaos written by Stephen Wiggins and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: J. M. T. Thompson

Publisher: John Wiley & Sons

Published: 2002-02-15

Total Pages: 492

ISBN-13: 9780471876847

DOWNLOAD EBOOK

Ein angesehener Bestseller - jetzt in der 2.aktualisierten Auflage! In diesem Buch finden Sie die aktuellsten Forschungsergebnisse auf dem Gebiet nichtlinearer Dynamik und Chaos, einem der am schnellsten wachsenden Teilgebiete der Mathematik. Die seit der ersten Auflage hinzugekommenen Erkenntnisse sind in einem zusätzlichen Kapitel übersichtlich zusammengefasst.


Book Synopsis Nonlinear Dynamics and Chaos by : J. M. T. Thompson

Download or read book Nonlinear Dynamics and Chaos written by J. M. T. Thompson and published by John Wiley & Sons. This book was released on 2002-02-15 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein angesehener Bestseller - jetzt in der 2.aktualisierten Auflage! In diesem Buch finden Sie die aktuellsten Forschungsergebnisse auf dem Gebiet nichtlinearer Dynamik und Chaos, einem der am schnellsten wachsenden Teilgebiete der Mathematik. Die seit der ersten Auflage hinzugekommenen Erkenntnisse sind in einem zusätzlichen Kapitel übersichtlich zusammengefasst.


Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 3

Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 3

Author: Santo Banerjee

Publisher: Springer

Published: 2013-06-12

Total Pages: 297

ISBN-13: 3642340172

DOWNLOAD EBOOK

Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This third volume concentrates on reviewing further relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such fluctuation relations and chaotic dynamics in physics, fractals and their applications in epileptic seizures, as well as chaos synchronization. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications.


Book Synopsis Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 3 by : Santo Banerjee

Download or read book Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 3 written by Santo Banerjee and published by Springer. This book was released on 2013-06-12 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This third volume concentrates on reviewing further relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such fluctuation relations and chaotic dynamics in physics, fractals and their applications in epileptic seizures, as well as chaos synchronization. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications.


Chaos

Chaos

Author: Kathleen Alligood

Publisher: Springer

Published: 2012-12-06

Total Pages: 620

ISBN-13: 3642592813

DOWNLOAD EBOOK

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.


Book Synopsis Chaos by : Kathleen Alligood

Download or read book Chaos written by Kathleen Alligood and published by Springer. This book was released on 2012-12-06 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.