Organic-inorganic Composite Membranes For Molecular Separation

Organic-inorganic Composite Membranes For Molecular Separation

Author: Jin Wanqin

Publisher: World Scientific

Published: 2017-09-27

Total Pages: 312

ISBN-13: 1786342936

DOWNLOAD EBOOK

This book gives comprehensive information on the design, preparation and application of organic-inorganic composite membranes that are used for molecular separation. Various membrane types with different materials are highlighted, including polymer/ceramic composite membranes, mixed matrix membranes, metal-organic frameworks membranes and graphene-based membranes. Physical and chemical properties, morphologies, interfacial behaviors, transport characteristics and separation performance of the organic-inorganic composite membranes are thoroughly discussed based on advanced characterization techniques. Meanwhile, the book contains several typical applications of the membranes in fields such as bio-fuels production, organic compounds recovery, solvent dehydration, carbon dioxide capture and others. In addition, large-scale production and industrial implementation of the organic-inorganic composite membranes are briefly introduced. Contents: IntroductionPrinciples of Pervaporation and Gas Separation in Membrane ProcessPolymer/Ceramic Composite MembranesMetal-Organic Frameworks MembranesGraphene-Based MembranesMixed Matrix MembranesNovel Characterization TechniquesScale-Up Fabrication and Industrial ApplicationConclusion and Prospective Readership: Researchers, academics, professionals and graduate students in chemical engineering, materials engineering, surface chemistry, new materials and polymers. Keywords: Organic-Inorganic Membrane;Pervaporation;Gas Separation;Mixed Matrix Membrane;Graphene Membrane;MOF MembraneReview:0


Book Synopsis Organic-inorganic Composite Membranes For Molecular Separation by : Jin Wanqin

Download or read book Organic-inorganic Composite Membranes For Molecular Separation written by Jin Wanqin and published by World Scientific. This book was released on 2017-09-27 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives comprehensive information on the design, preparation and application of organic-inorganic composite membranes that are used for molecular separation. Various membrane types with different materials are highlighted, including polymer/ceramic composite membranes, mixed matrix membranes, metal-organic frameworks membranes and graphene-based membranes. Physical and chemical properties, morphologies, interfacial behaviors, transport characteristics and separation performance of the organic-inorganic composite membranes are thoroughly discussed based on advanced characterization techniques. Meanwhile, the book contains several typical applications of the membranes in fields such as bio-fuels production, organic compounds recovery, solvent dehydration, carbon dioxide capture and others. In addition, large-scale production and industrial implementation of the organic-inorganic composite membranes are briefly introduced. Contents: IntroductionPrinciples of Pervaporation and Gas Separation in Membrane ProcessPolymer/Ceramic Composite MembranesMetal-Organic Frameworks MembranesGraphene-Based MembranesMixed Matrix MembranesNovel Characterization TechniquesScale-Up Fabrication and Industrial ApplicationConclusion and Prospective Readership: Researchers, academics, professionals and graduate students in chemical engineering, materials engineering, surface chemistry, new materials and polymers. Keywords: Organic-Inorganic Membrane;Pervaporation;Gas Separation;Mixed Matrix Membrane;Graphene Membrane;MOF MembraneReview:0


Organic-inorganic Nanocomposite Membranes from Highly Ordered Mesoporous Thin Films for Solubility-based Separations

Organic-inorganic Nanocomposite Membranes from Highly Ordered Mesoporous Thin Films for Solubility-based Separations

Author: Suk Joon Yoo

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Solubility-based membrane separation, in which the more soluble species preferentially permeates across the membrane, has attracted considerable recent attention due to both economic and environmental concerns. This solubility-selective mode is particularly attractive over a diffusivity-selective mode in applications in which the heavier species are present in dilute concentrations. Examples include the recovery of volatile organic components (VOCs) from effluent streams and the removal of higher hydrocarbons from natural gas. Recently, nanocomposites have shown great promise as possible membrane materials for solubility-selective separations. The chemical derivatization of inorganic mesoporous substrates has been explored to synthesize organic-inorganic nanocomposite membranes. The most exciting feature of this approach is that it enables the rational engineering of membrane nano-architecture with independent control over the free volume and chemistry to create membranes with highly customizable permselectivity properties. In this study, we synthesized the organic-inorganic nanocomposite membranes by decorating the surfaces of commercially available mesoporous alumina substrates, and surfactant-templated highly ordered mesoporous silicate thin films placed on commercially available macroporous inorganic substrates, with a selective organic material that is physically or chemically anchored to the porous surfaces. Hyperbranched melamine-based dendrimers, with nanometer dimension and chemical composition designed to target certain components, were used as filling agents. We evaluated these membranes for several environmentally relevant separations, such as the recovery of the higher hydrocarbon from air and the removal of trace VOCs from air or water, while exploring the impact of organic oligomer size, chemistry, and surface coverage, as well as substrate pore size and structure, on membrane performance. First, we did a model study to verify the feasibility of dendrimer growth inside mesopores by using ordered mesoporous silica. Alumina-ordered mesoporous silica (alumina-OMS) hybrid membranes were prepared as new inorganic porous substrates. Finally, we synthesized dendrimer-ceramic nanocomposite membranes by growing several generations of melamine-based dendrimers with diverse functional groups directly off the commercial alumina membranes. Composite membranes show very high propane/nitrogen selectivity up to 70.


Book Synopsis Organic-inorganic Nanocomposite Membranes from Highly Ordered Mesoporous Thin Films for Solubility-based Separations by : Suk Joon Yoo

Download or read book Organic-inorganic Nanocomposite Membranes from Highly Ordered Mesoporous Thin Films for Solubility-based Separations written by Suk Joon Yoo and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Solubility-based membrane separation, in which the more soluble species preferentially permeates across the membrane, has attracted considerable recent attention due to both economic and environmental concerns. This solubility-selective mode is particularly attractive over a diffusivity-selective mode in applications in which the heavier species are present in dilute concentrations. Examples include the recovery of volatile organic components (VOCs) from effluent streams and the removal of higher hydrocarbons from natural gas. Recently, nanocomposites have shown great promise as possible membrane materials for solubility-selective separations. The chemical derivatization of inorganic mesoporous substrates has been explored to synthesize organic-inorganic nanocomposite membranes. The most exciting feature of this approach is that it enables the rational engineering of membrane nano-architecture with independent control over the free volume and chemistry to create membranes with highly customizable permselectivity properties. In this study, we synthesized the organic-inorganic nanocomposite membranes by decorating the surfaces of commercially available mesoporous alumina substrates, and surfactant-templated highly ordered mesoporous silicate thin films placed on commercially available macroporous inorganic substrates, with a selective organic material that is physically or chemically anchored to the porous surfaces. Hyperbranched melamine-based dendrimers, with nanometer dimension and chemical composition designed to target certain components, were used as filling agents. We evaluated these membranes for several environmentally relevant separations, such as the recovery of the higher hydrocarbon from air and the removal of trace VOCs from air or water, while exploring the impact of organic oligomer size, chemistry, and surface coverage, as well as substrate pore size and structure, on membrane performance. First, we did a model study to verify the feasibility of dendrimer growth inside mesopores by using ordered mesoporous silica. Alumina-ordered mesoporous silica (alumina-OMS) hybrid membranes were prepared as new inorganic porous substrates. Finally, we synthesized dendrimer-ceramic nanocomposite membranes by growing several generations of melamine-based dendrimers with diverse functional groups directly off the commercial alumina membranes. Composite membranes show very high propane/nitrogen selectivity up to 70.


Inorganic Polymeric and Composite Membranes

Inorganic Polymeric and Composite Membranes

Author: S. Ted Oyama

Publisher: Elsevier

Published: 2011-05-04

Total Pages: 394

ISBN-13: 0444537295

DOWNLOAD EBOOK

Inorganic, Polymeric and Composite Membranes: Structure-Function and Other Correlations covers the latest technical advances in topics such as structure-function relationships for polymeric, inorganic, and composite membranes. Leading scientists provide in depth reviews and disseminate cutting-edge research results on correlations but also discuss new materials, characterization, modelling, computational simulation, process concepts, and spectroscopy. Unified by fundamental general correlations theme Many graphical examples Covers all major membrane types


Book Synopsis Inorganic Polymeric and Composite Membranes by : S. Ted Oyama

Download or read book Inorganic Polymeric and Composite Membranes written by S. Ted Oyama and published by Elsevier. This book was released on 2011-05-04 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inorganic, Polymeric and Composite Membranes: Structure-Function and Other Correlations covers the latest technical advances in topics such as structure-function relationships for polymeric, inorganic, and composite membranes. Leading scientists provide in depth reviews and disseminate cutting-edge research results on correlations but also discuss new materials, characterization, modelling, computational simulation, process concepts, and spectroscopy. Unified by fundamental general correlations theme Many graphical examples Covers all major membrane types


Nanocomposite Membranes for Gas Separation

Nanocomposite Membranes for Gas Separation

Author: Pei Sean Goh

Publisher: Elsevier

Published: 2020-07-07

Total Pages: 312

ISBN-13: 0128194073

DOWNLOAD EBOOK

The development of a new class of nanocomposite membranes has served as one of the most prominent strategies to address the intrinsic limitations of conventionally used polymeric and inorganic membranes. Nanocomposite membranes consist of nanosized inorganic nanomaterials that are incorporated into the structure of continuous polymer matrices. Owing to the exceptional properties exhibited by the nanomaterials, the resultant nanocomposite membranes demonstrate higher selectivity and permeability that surpass the Robeson upper boundary limit. Nanocomposite Membranes for Gas Separation provides a comprehensive review of the advances made in the development and application of gas separation nanocomposite membranes. In particular, the book covers the focuses on the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation. It is an important reference source both for materials scientists, environmental engineers and chemical engineers who are looking to understand how nanocomposite membranes are being used to create better techniques for gas separation. Provides detailed insights in the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation Shows how nanotechnology is being used to address current limitations of the development of polymeric and inorganic membranes for gas separation, including low separation performance in terms of permeability and selectivity Explores the potential of nanocomposite membranes to help create more effective gas separation techniques


Book Synopsis Nanocomposite Membranes for Gas Separation by : Pei Sean Goh

Download or read book Nanocomposite Membranes for Gas Separation written by Pei Sean Goh and published by Elsevier. This book was released on 2020-07-07 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of a new class of nanocomposite membranes has served as one of the most prominent strategies to address the intrinsic limitations of conventionally used polymeric and inorganic membranes. Nanocomposite membranes consist of nanosized inorganic nanomaterials that are incorporated into the structure of continuous polymer matrices. Owing to the exceptional properties exhibited by the nanomaterials, the resultant nanocomposite membranes demonstrate higher selectivity and permeability that surpass the Robeson upper boundary limit. Nanocomposite Membranes for Gas Separation provides a comprehensive review of the advances made in the development and application of gas separation nanocomposite membranes. In particular, the book covers the focuses on the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation. It is an important reference source both for materials scientists, environmental engineers and chemical engineers who are looking to understand how nanocomposite membranes are being used to create better techniques for gas separation. Provides detailed insights in the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation Shows how nanotechnology is being used to address current limitations of the development of polymeric and inorganic membranes for gas separation, including low separation performance in terms of permeability and selectivity Explores the potential of nanocomposite membranes to help create more effective gas separation techniques


Gas Separation Membranes

Gas Separation Membranes

Author: Ahmad Fauzi Ismail

Publisher: Springer

Published: 2015-04-28

Total Pages: 340

ISBN-13: 3319010956

DOWNLOAD EBOOK

This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.


Book Synopsis Gas Separation Membranes by : Ahmad Fauzi Ismail

Download or read book Gas Separation Membranes written by Ahmad Fauzi Ismail and published by Springer. This book was released on 2015-04-28 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.


Metal-organic Framework Membranes For Molecular Gas Separations

Metal-organic Framework Membranes For Molecular Gas Separations

Author: Moises A Carreon

Publisher: World Scientific

Published: 2020-07-30

Total Pages: 283

ISBN-13: 1786346745

DOWNLOAD EBOOK

This unique compendium describes research progress on metal-organic framework (MOF) membranes for different relevant industrial gas separations. Specifically, the book focuses mainly on gas separations which are important in flue gas treatment, natural gas purification, hydrogen purification, and nuclear reprocessing. The advantages of using MOFs in mixed matrix membranes are discussed. Some of the pressing challenges in the field, and strategies to potentially overcome them are also distinctly outlined.This volume is a useful reference materials for professionals, academics, researchers and postgraduate students in chemical engineering and materials engineering.


Book Synopsis Metal-organic Framework Membranes For Molecular Gas Separations by : Moises A Carreon

Download or read book Metal-organic Framework Membranes For Molecular Gas Separations written by Moises A Carreon and published by World Scientific. This book was released on 2020-07-30 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique compendium describes research progress on metal-organic framework (MOF) membranes for different relevant industrial gas separations. Specifically, the book focuses mainly on gas separations which are important in flue gas treatment, natural gas purification, hydrogen purification, and nuclear reprocessing. The advantages of using MOFs in mixed matrix membranes are discussed. Some of the pressing challenges in the field, and strategies to potentially overcome them are also distinctly outlined.This volume is a useful reference materials for professionals, academics, researchers and postgraduate students in chemical engineering and materials engineering.


Preparation of Organic/inorganic Composite Membrane by Plasma-graft Filling Polymerization Technique for Organic-liquid Separation

Preparation of Organic/inorganic Composite Membrane by Plasma-graft Filling Polymerization Technique for Organic-liquid Separation

Author: Teruhiko Kai

Publisher:

Published: 1998

Total Pages: 8

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Preparation of Organic/inorganic Composite Membrane by Plasma-graft Filling Polymerization Technique for Organic-liquid Separation by : Teruhiko Kai

Download or read book Preparation of Organic/inorganic Composite Membrane by Plasma-graft Filling Polymerization Technique for Organic-liquid Separation written by Teruhiko Kai and published by . This book was released on 1998 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Membranes For Gas Separations

Membranes For Gas Separations

Author: Carreon Moises A

Publisher: World Scientific

Published: 2017-08-11

Total Pages: 376

ISBN-13: 9813207728

DOWNLOAD EBOOK

This book aims at illustrating several examples of different membrane compositions ranging from inorganic, polymeric, metallic, metal organic framework, and composite which have been successfully deployed to separate industrially relevant gas mixtures including hydrogen, nitrogen, methane, carbon dioxide, olefins/parafins among others. Each book chapter highlights some of the current and key fundamental and technological challenges for these membranes that must be overcome in order to envision its application at industrial level. Contents: Mixed Matrix Membranes for Gas Separation Applications (Maria Carreon, Ganpat Dahe, Jie Feng and Surendar R Venna)Ceramic-Supported Organic Composite Membranes for Gas Separation (Gongping Liu and Wanqin Jin)Molecular Modeling of MOF Membranes for Gas Separations (Ilknur Erucar and Seda Keskin)Membrane Processes for N2–CH4 Separation (Shiguang Li, Zhaowang Zong, Miao Yu and Moises A Carreon)Polymer Blend Membranes for Gas Separations (Charles J Holt, Juan P Vizuet, Inga H Musselman, Kenneth J Balkus Jr and John P Ferraris)Manipulating Polyimide Nanostructures via Cross-linking for Membrane Gas Separation (Lingxiang Zhu, Maryam Omidvar and Haiqing Lin)Dense Inorganic Membranes for Hydrogen Separation (Sean-Thomas B Lundin, Neil S Patki, Thomas F Fuerst, Sandrine Ricote, Colin A Wolden and J Douglas Way) Readership: Graduate students and professionals in the field of membranes, gas separations and chemical engineering. Membranes;Gas Separations;Zeolites;Polymers;MetalsKey Features: Covers diverse industrially relevant gas separationsIllustrates different membrane compositionsChapters devoted to both experimental and modelling studies


Book Synopsis Membranes For Gas Separations by : Carreon Moises A

Download or read book Membranes For Gas Separations written by Carreon Moises A and published by World Scientific. This book was released on 2017-08-11 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at illustrating several examples of different membrane compositions ranging from inorganic, polymeric, metallic, metal organic framework, and composite which have been successfully deployed to separate industrially relevant gas mixtures including hydrogen, nitrogen, methane, carbon dioxide, olefins/parafins among others. Each book chapter highlights some of the current and key fundamental and technological challenges for these membranes that must be overcome in order to envision its application at industrial level. Contents: Mixed Matrix Membranes for Gas Separation Applications (Maria Carreon, Ganpat Dahe, Jie Feng and Surendar R Venna)Ceramic-Supported Organic Composite Membranes for Gas Separation (Gongping Liu and Wanqin Jin)Molecular Modeling of MOF Membranes for Gas Separations (Ilknur Erucar and Seda Keskin)Membrane Processes for N2–CH4 Separation (Shiguang Li, Zhaowang Zong, Miao Yu and Moises A Carreon)Polymer Blend Membranes for Gas Separations (Charles J Holt, Juan P Vizuet, Inga H Musselman, Kenneth J Balkus Jr and John P Ferraris)Manipulating Polyimide Nanostructures via Cross-linking for Membrane Gas Separation (Lingxiang Zhu, Maryam Omidvar and Haiqing Lin)Dense Inorganic Membranes for Hydrogen Separation (Sean-Thomas B Lundin, Neil S Patki, Thomas F Fuerst, Sandrine Ricote, Colin A Wolden and J Douglas Way) Readership: Graduate students and professionals in the field of membranes, gas separations and chemical engineering. Membranes;Gas Separations;Zeolites;Polymers;MetalsKey Features: Covers diverse industrially relevant gas separationsIllustrates different membrane compositionsChapters devoted to both experimental and modelling studies


Fundamentals of Inorganic Membrane Science and Technology

Fundamentals of Inorganic Membrane Science and Technology

Author: A.J. Burggraaf

Publisher: Elsevier

Published: 1996-11-19

Total Pages: 689

ISBN-13: 9780080534701

DOWNLOAD EBOOK

Inorganic membrane science and technology is a new field of membrane separation technology which until recently was dominated by the earlier field of polymer membranes. Currently the subject is undergoing rapid development and innovation. The present book describes the fundamental principles of both synthesis of inorganic membranes and membrane supports and also the associated phenomena of transport and separation in a semi-quantitative form. Features of this book: - Examples are given which illustrate the state-of-the-art in the synthesis of membranes with controlled properties - Future possibilities and limitations are discussed - The reader is provided with references to more extended treatments in the literature - Potential areas for future innovation are indicated. By combining aspects of both the science and technology of inorganic membranes this book serves as a useful source of information for scientists and engineers working in this field. It also provides some observations of important investigators who have contributed to the development of this subject.


Book Synopsis Fundamentals of Inorganic Membrane Science and Technology by : A.J. Burggraaf

Download or read book Fundamentals of Inorganic Membrane Science and Technology written by A.J. Burggraaf and published by Elsevier. This book was released on 1996-11-19 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inorganic membrane science and technology is a new field of membrane separation technology which until recently was dominated by the earlier field of polymer membranes. Currently the subject is undergoing rapid development and innovation. The present book describes the fundamental principles of both synthesis of inorganic membranes and membrane supports and also the associated phenomena of transport and separation in a semi-quantitative form. Features of this book: - Examples are given which illustrate the state-of-the-art in the synthesis of membranes with controlled properties - Future possibilities and limitations are discussed - The reader is provided with references to more extended treatments in the literature - Potential areas for future innovation are indicated. By combining aspects of both the science and technology of inorganic membranes this book serves as a useful source of information for scientists and engineers working in this field. It also provides some observations of important investigators who have contributed to the development of this subject.


Nanostructure Control of Materials

Nanostructure Control of Materials

Author: R H J Hannink

Publisher: Taylor & Francis US

Published: 2006-02-28

Total Pages: 380

ISBN-13: 9781855739338

DOWNLOAD EBOOK

Annotation Nanotechnology is an area of science and technology where dimensions and tolerances in the range of 0.1 nm to 100nm play a critical role. Nanotechnology has opened up new worlds of opportunity. It encompasses precision engineering as well as electronics, electromechanical systems and mainstream biomedical applications in areas as diverse as gene therapy, drug delivery and novel drug discovery techniques. Nanostructured materials present exciting opportunities for manipulating structure and properties on the nanometer scale. The ability to engineer novel structures at the molecular level has led to unprecedented opportunities for materials design. This new book provides detailed insights into the synthesis/structure and property relationships of nanostructured materials. A valuable book for materials scientists, mechanical and electronic engineers and medical researchers. CONTENTS Special properties resulting from nanodimensionality; Nanoparticle technologies; Control of molecular assemblies; Functional organic inorganic nanocomposites; Molecular modelling of nanomorphology in polymers; Nanodimensionality and ionic transport; Multi scale simulation of nanionic polymer systems; Nanoengineering in metallic systems; Characterisation of nanometallic systems with NMR; Mechanical behaviour of metallic nanolaminates; Mechanics of nanocomposite structures; Preparation, properties and performance of Nanocrystalline ceramics; Novel properties from nanoceramics; Hydrogen storage in nanostructured materials; Nanofabrication.


Book Synopsis Nanostructure Control of Materials by : R H J Hannink

Download or read book Nanostructure Control of Materials written by R H J Hannink and published by Taylor & Francis US. This book was released on 2006-02-28 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Nanotechnology is an area of science and technology where dimensions and tolerances in the range of 0.1 nm to 100nm play a critical role. Nanotechnology has opened up new worlds of opportunity. It encompasses precision engineering as well as electronics, electromechanical systems and mainstream biomedical applications in areas as diverse as gene therapy, drug delivery and novel drug discovery techniques. Nanostructured materials present exciting opportunities for manipulating structure and properties on the nanometer scale. The ability to engineer novel structures at the molecular level has led to unprecedented opportunities for materials design. This new book provides detailed insights into the synthesis/structure and property relationships of nanostructured materials. A valuable book for materials scientists, mechanical and electronic engineers and medical researchers. CONTENTS Special properties resulting from nanodimensionality; Nanoparticle technologies; Control of molecular assemblies; Functional organic inorganic nanocomposites; Molecular modelling of nanomorphology in polymers; Nanodimensionality and ionic transport; Multi scale simulation of nanionic polymer systems; Nanoengineering in metallic systems; Characterisation of nanometallic systems with NMR; Mechanical behaviour of metallic nanolaminates; Mechanics of nanocomposite structures; Preparation, properties and performance of Nanocrystalline ceramics; Novel properties from nanoceramics; Hydrogen storage in nanostructured materials; Nanofabrication.