Partial Differential Equations with Fourier Series and Boundary Value Problems

Partial Differential Equations with Fourier Series and Boundary Value Problems

Author: Nakhle H. Asmar

Publisher: Courier Dover Publications

Published: 2017-03-23

Total Pages: 818

ISBN-13: 0486820831

DOWNLOAD EBOOK

Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; the Instructor Solutions Manual is available upon request. 2004 edition, with minor revisions.


Book Synopsis Partial Differential Equations with Fourier Series and Boundary Value Problems by : Nakhle H. Asmar

Download or read book Partial Differential Equations with Fourier Series and Boundary Value Problems written by Nakhle H. Asmar and published by Courier Dover Publications. This book was released on 2017-03-23 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; the Instructor Solutions Manual is available upon request. 2004 edition, with minor revisions.


Partial Differential Equations and Boundary-Value Problems with Applications

Partial Differential Equations and Boundary-Value Problems with Applications

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 545

ISBN-13: 0821868896

DOWNLOAD EBOOK

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.


Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky

Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.


Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations

Author: Ravi P. Agarwal

Publisher: Springer Science & Business Media

Published: 2008-11-13

Total Pages: 422

ISBN-13: 0387791469

DOWNLOAD EBOOK

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.


Book Synopsis Ordinary and Partial Differential Equations by : Ravi P. Agarwal

Download or read book Ordinary and Partial Differential Equations written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2008-11-13 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.


Elementary Applied Partial Differential Equations

Elementary Applied Partial Differential Equations

Author: Richard Haberman

Publisher:

Published: 1998

Total Pages: 0

ISBN-13: 9780132638074

DOWNLOAD EBOOK

This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.


Book Synopsis Elementary Applied Partial Differential Equations by : Richard Haberman

Download or read book Elementary Applied Partial Differential Equations written by Richard Haberman and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.


Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)

Author: Richard Haberman

Publisher: Pearson

Published: 2018-03-15

Total Pages: 784

ISBN-13: 9780134995434

DOWNLOAD EBOOK

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.


Book Synopsis Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version) by : Richard Haberman

Download or read book Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version) written by Richard Haberman and published by Pearson. This book was released on 2018-03-15 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.


Fourier Analysis and Boundary Value Problems

Fourier Analysis and Boundary Value Problems

Author: Enrique A. Gonzalez-Velasco

Publisher: Elsevier

Published: 1996-11-28

Total Pages: 565

ISBN-13: 0080531938

DOWNLOAD EBOOK

Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. Topics are covered from a historical perspective with biographical information on key contributors to the field The text contains more than 500 exercises Includes practical applications of the equations to problems in both engineering and physics


Book Synopsis Fourier Analysis and Boundary Value Problems by : Enrique A. Gonzalez-Velasco

Download or read book Fourier Analysis and Boundary Value Problems written by Enrique A. Gonzalez-Velasco and published by Elsevier. This book was released on 1996-11-28 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. Topics are covered from a historical perspective with biographical information on key contributors to the field The text contains more than 500 exercises Includes practical applications of the equations to problems in both engineering and physics


Fourier Series and Numerical Methods for Partial Differential Equations

Fourier Series and Numerical Methods for Partial Differential Equations

Author: Richard Bernatz

Publisher: John Wiley & Sons

Published: 2010-07-30

Total Pages: 336

ISBN-13: 0470651377

DOWNLOAD EBOOK

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.


Book Synopsis Fourier Series and Numerical Methods for Partial Differential Equations by : Richard Bernatz

Download or read book Fourier Series and Numerical Methods for Partial Differential Equations written by Richard Bernatz and published by John Wiley & Sons. This book was released on 2010-07-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.


Introduction to Partial Differential Equations

Introduction to Partial Differential Equations

Author: Arne Broman

Publisher: Courier Corporation

Published: 2012-04-27

Total Pages: 196

ISBN-13: 0486153010

DOWNLOAD EBOOK

The self-contained treatment covers Fourier series, orthogonal systems, Fourier and Laplace transforms, Bessel functions, and partial differential equations of the first and second orders. 266 exercises with solutions. 1970 edition.


Book Synopsis Introduction to Partial Differential Equations by : Arne Broman

Download or read book Introduction to Partial Differential Equations written by Arne Broman and published by Courier Corporation. This book was released on 2012-04-27 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The self-contained treatment covers Fourier series, orthogonal systems, Fourier and Laplace transforms, Bessel functions, and partial differential equations of the first and second orders. 266 exercises with solutions. 1970 edition.


Partial Differential Equations and Boundary Value Problems

Partial Differential Equations and Boundary Value Problems

Author: Nakhlé H. Asmar

Publisher:

Published: 2000

Total Pages: 616

ISBN-13:

DOWNLOAD EBOOK

For introductory courses in PDEs taken by majors in engineering, physics, and mathematics. Packed with examples, this text provides a smooth transition from a course in elementary ordinary differential equations to more advanced concepts in a first course in partial differential equations. Asmar's relaxed style and emphasis on applications make the material understandable even for students with limited exposure to topics beyond calculus. This computer-friendly text encourages the use of computer resources for illustrating results and applications, but it is also suitable for use without computer access. Additional specialized topics are included that are covered independently of each other and can be covered by instructors as desired.


Book Synopsis Partial Differential Equations and Boundary Value Problems by : Nakhlé H. Asmar

Download or read book Partial Differential Equations and Boundary Value Problems written by Nakhlé H. Asmar and published by . This book was released on 2000 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: For introductory courses in PDEs taken by majors in engineering, physics, and mathematics. Packed with examples, this text provides a smooth transition from a course in elementary ordinary differential equations to more advanced concepts in a first course in partial differential equations. Asmar's relaxed style and emphasis on applications make the material understandable even for students with limited exposure to topics beyond calculus. This computer-friendly text encourages the use of computer resources for illustrating results and applications, but it is also suitable for use without computer access. Additional specialized topics are included that are covered independently of each other and can be covered by instructors as desired.


Boundary Value Problems

Boundary Value Problems

Author: David L. Powers

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 249

ISBN-13: 1483269787

DOWNLOAD EBOOK

Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.


Book Synopsis Boundary Value Problems by : David L. Powers

Download or read book Boundary Value Problems written by David L. Powers and published by Elsevier. This book was released on 2014-05-10 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.