Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Author: Rico Berner

Publisher:

Published: 2021

Total Pages: 203

ISBN-13: 9783030749392

DOWNLOAD EBOOK

The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.


Book Synopsis Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators by : Rico Berner

Download or read book Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators written by Rico Berner and published by . This book was released on 2021 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.


Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Author: Rico Berner

Publisher: Springer Nature

Published: 2021-05-31

Total Pages: 210

ISBN-13: 303074938X

DOWNLOAD EBOOK

The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.


Book Synopsis Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators by : Rico Berner

Download or read book Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators written by Rico Berner and published by Springer Nature. This book was released on 2021-05-31 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.


Bio-Inspired Information Pathways

Bio-Inspired Information Pathways

Author: Martin Ziegler

Publisher: Springer Nature

Published:

Total Pages: 439

ISBN-13: 3031367057

DOWNLOAD EBOOK


Book Synopsis Bio-Inspired Information Pathways by : Martin Ziegler

Download or read book Bio-Inspired Information Pathways written by Martin Ziegler and published by Springer Nature. This book was released on with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Patterns of Synchrony and Disorder in Networks of Coupled Oscillators

Patterns of Synchrony and Disorder in Networks of Coupled Oscillators

Author: Oleh Omelʹchenko

Publisher:

Published: 2021

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Synchronization of coupled oscillators manifests itself in many natural and man-made systems, including cyrcadian clocks, central pattern generators, laser arrays, power grids, chemical and electrochemical oscillators, only to name a few. The mathematical description of this phenomenon is often based on the paradigmatic Kuramoto model, which represents each oscillator by one scalar variable, its phase. When coupled, phase oscillators constitute a high-dimensional dynamical system, which exhibits complex behaviour, ranging from synchronized uniform oscillation to quasiperiodicity and chaos. The corresponding collective rhythms can be useful or harmful to the normal operation of various systems, therefore they have been the subject of much research. Initially, synchronization phenomena have been studied in systems with all-to-all (global) and nearest-neighbour (local) coupling, or on random networks. However, in recent decades there has been a lot of interest in more complicated coupling structures, which take into account the ...


Book Synopsis Patterns of Synchrony and Disorder in Networks of Coupled Oscillators by : Oleh Omelʹchenko

Download or read book Patterns of Synchrony and Disorder in Networks of Coupled Oscillators written by Oleh Omelʹchenko and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Synchronization of coupled oscillators manifests itself in many natural and man-made systems, including cyrcadian clocks, central pattern generators, laser arrays, power grids, chemical and electrochemical oscillators, only to name a few. The mathematical description of this phenomenon is often based on the paradigmatic Kuramoto model, which represents each oscillator by one scalar variable, its phase. When coupled, phase oscillators constitute a high-dimensional dynamical system, which exhibits complex behaviour, ranging from synchronized uniform oscillation to quasiperiodicity and chaos. The corresponding collective rhythms can be useful or harmful to the normal operation of various systems, therefore they have been the subject of much research. Initially, synchronization phenomena have been studied in systems with all-to-all (global) and nearest-neighbour (local) coupling, or on random networks. However, in recent decades there has been a lot of interest in more complicated coupling structures, which take into account the ...


Controlling Synchronization Patterns in Complex Networks

Controlling Synchronization Patterns in Complex Networks

Author: Judith Lehnert

Publisher: Springer

Published: 2015-11-06

Total Pages: 213

ISBN-13: 3319251155

DOWNLOAD EBOOK

This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.


Book Synopsis Controlling Synchronization Patterns in Complex Networks by : Judith Lehnert

Download or read book Controlling Synchronization Patterns in Complex Networks written by Judith Lehnert and published by Springer. This book was released on 2015-11-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research aims to achieve a fundamental understanding of synchronization and its interplay with the topology of complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, medicine and engineering. Most prominently, synchronization takes place in the brain, where it is associated with several cognitive capacities but is - in abundance - a characteristic of neurological diseases. Besides zero-lag synchrony, group and cluster states are considered, enabling a description and study of complex synchronization patterns within the presented theory. Adaptive control methods are developed, which allow the control of synchronization in scenarios where parameters drift or are unknown. These methods are, therefore, of particular interest for experimental setups or technological applications. The theoretical framework is demonstrated on generic models, coupled chemical oscillators and several detailed examples of neural networks.


Python for Scientific Computing and Artificial Intelligence

Python for Scientific Computing and Artificial Intelligence

Author: Stephen Lynch

Publisher: CRC Press

Published: 2023-06-15

Total Pages: 334

ISBN-13: 100088967X

DOWNLOAD EBOOK

Python for Scientific Computing and Artificial Intelligence is split into 3 parts: in Section 1, the reader is introduced to the Python programming language and shown how Python can aid in the understanding of advanced High School Mathematics. In Section 2, the reader is shown how Python can be used to solve real-world problems from a broad range of scientific disciplines. Finally, in Section 3, the reader is introduced to neural networks and shown how TensorFlow (written in Python) can be used to solve a large array of problems in Artificial Intelligence (AI). This book was developed from a series of national and international workshops that the author has been delivering for over twenty years. The book is beginner friendly and has a strong practical emphasis on programming and computational modelling. Features: No prior experience of programming is required. Online GitHub repository available with codes for readers to practice. Covers applications and examples from biology, chemistry, computer science, data science, electrical and mechanical engineering, economics, mathematics, physics, statistics and binary oscillator computing. Full solutions to exercises are available as Jupyter notebooks on the Web. Support Material GitHub Repository of Python Files and Notebooks: https://github.com/proflynch/CRC-Press/ Solutions to All Exercises: Section 1: An Introduction to Python: https://drstephenlynch.github.io/webpages/Solutions_Section_1.html Section 2: Python for Scientific Computing: https://drstephenlynch.github.io/webpages/Solutions_Section_2.html Section 3: Artificial Intelligence: https://drstephenlynch.github.io/webpages/Solutions_Section_3.html


Book Synopsis Python for Scientific Computing and Artificial Intelligence by : Stephen Lynch

Download or read book Python for Scientific Computing and Artificial Intelligence written by Stephen Lynch and published by CRC Press. This book was released on 2023-06-15 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python for Scientific Computing and Artificial Intelligence is split into 3 parts: in Section 1, the reader is introduced to the Python programming language and shown how Python can aid in the understanding of advanced High School Mathematics. In Section 2, the reader is shown how Python can be used to solve real-world problems from a broad range of scientific disciplines. Finally, in Section 3, the reader is introduced to neural networks and shown how TensorFlow (written in Python) can be used to solve a large array of problems in Artificial Intelligence (AI). This book was developed from a series of national and international workshops that the author has been delivering for over twenty years. The book is beginner friendly and has a strong practical emphasis on programming and computational modelling. Features: No prior experience of programming is required. Online GitHub repository available with codes for readers to practice. Covers applications and examples from biology, chemistry, computer science, data science, electrical and mechanical engineering, economics, mathematics, physics, statistics and binary oscillator computing. Full solutions to exercises are available as Jupyter notebooks on the Web. Support Material GitHub Repository of Python Files and Notebooks: https://github.com/proflynch/CRC-Press/ Solutions to All Exercises: Section 1: An Introduction to Python: https://drstephenlynch.github.io/webpages/Solutions_Section_1.html Section 2: Python for Scientific Computing: https://drstephenlynch.github.io/webpages/Solutions_Section_2.html Section 3: Artificial Intelligence: https://drstephenlynch.github.io/webpages/Solutions_Section_3.html


From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and Noise

From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and Noise

Author: Serhiy Yanchuk

Publisher: Frontiers Media SA

Published: 2022-05-06

Total Pages: 214

ISBN-13: 288976138X

DOWNLOAD EBOOK


Book Synopsis From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and Noise by : Serhiy Yanchuk

Download or read book From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and Noise written by Serhiy Yanchuk and published by Frontiers Media SA. This book was released on 2022-05-06 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Delay Controlled Partial Synchronization in Complex Networks

Delay Controlled Partial Synchronization in Complex Networks

Author: Jakub Sawicki

Publisher:

Published: 2019

Total Pages:

ISBN-13: 9783030340773

DOWNLOAD EBOOK

The focus of this thesis are synchronization phenomena in networks and their intrinsic control through time delay, which is ubiquitous in real-world systems ranging from physics and acoustics to neuroscience and engineering. We encounter synchronization everywhere and it can be either a helpful or a detrimental mechanism. In the first part, after a survey of complex nonlinear systems and networks, we show that a seemingly simple system of two organ pipes gives birth to complex bifurcation and synchronization scenarios. Going from a 2-oscillator system to a ring of oscillators, we encounter the intriguing phenomenon of chimera states which are partial synchrony patterns with coexisting domains of synchronized and desynchronized dynamics. For more than a decade scientist have tried to solve the puzzle of this spontaneous symmetry-breaking emerging in networks of identical elements. We provide an analysis of initial conditions and extend our model by the addition of time delay and fractal connectivities. In the second part, we investigate partial synchronization patterns in a neuronal network and explain dynamical asymmetry arising from the hemispheric structure of the human brain. A particular focus is on the novel scenario of partial relay synchronization in multiplex networks. Such networks allow for synchronization of the coherent domains of chimera states via a remote layer, whereas the incoherent domains remain desynchronized. The theoretical framework is demonstrated with different generic models.


Book Synopsis Delay Controlled Partial Synchronization in Complex Networks by : Jakub Sawicki

Download or read book Delay Controlled Partial Synchronization in Complex Networks written by Jakub Sawicki and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this thesis are synchronization phenomena in networks and their intrinsic control through time delay, which is ubiquitous in real-world systems ranging from physics and acoustics to neuroscience and engineering. We encounter synchronization everywhere and it can be either a helpful or a detrimental mechanism. In the first part, after a survey of complex nonlinear systems and networks, we show that a seemingly simple system of two organ pipes gives birth to complex bifurcation and synchronization scenarios. Going from a 2-oscillator system to a ring of oscillators, we encounter the intriguing phenomenon of chimera states which are partial synchrony patterns with coexisting domains of synchronized and desynchronized dynamics. For more than a decade scientist have tried to solve the puzzle of this spontaneous symmetry-breaking emerging in networks of identical elements. We provide an analysis of initial conditions and extend our model by the addition of time delay and fractal connectivities. In the second part, we investigate partial synchronization patterns in a neuronal network and explain dynamical asymmetry arising from the hemispheric structure of the human brain. A particular focus is on the novel scenario of partial relay synchronization in multiplex networks. Such networks allow for synchronization of the coherent domains of chimera states via a remote layer, whereas the incoherent domains remain desynchronized. The theoretical framework is demonstrated with different generic models.


Delay Controlled Partial Synchronization in Complex Networks

Delay Controlled Partial Synchronization in Complex Networks

Author: Jakub Sawicki

Publisher: Springer Nature

Published: 2019-11-30

Total Pages: 166

ISBN-13: 3030340767

DOWNLOAD EBOOK

The focus of this thesis are synchronization phenomena in networks and their intrinsic control through time delay, which is ubiquitous in real-world systems ranging from physics and acoustics to neuroscience and engineering. We encounter synchronization everywhere and it can be either a helpful or a detrimental mechanism. In the first part, after a survey of complex nonlinear systems and networks, we show that a seemingly simple system of two organ pipes gives birth to complex bifurcation and synchronization scenarios. Going from a 2-oscillator system to a ring of oscillators, we encounter the intriguing phenomenon of chimera states which are partial synchrony patterns with coexisting domains of synchronized and desynchronized dynamics. For more than a decade scientist have tried to solve the puzzle of this spontaneous symmetry-breaking emerging in networks of identical elements. We provide an analysis of initial conditions and extend our model by the addition of time delay and fractal connectivities. In the second part, we investigate partial synchronization patterns in a neuronal network and explain dynamical asymmetry arising from the hemispheric structure of the human brain. A particular focus is on the novel scenario of partial relay synchronization in multiplex networks. Such networks allow for synchronization of the coherent domains of chimera states via a remote layer, whereas the incoherent domains remain desynchronized. The theoretical framework is demonstrated with different generic models.


Book Synopsis Delay Controlled Partial Synchronization in Complex Networks by : Jakub Sawicki

Download or read book Delay Controlled Partial Synchronization in Complex Networks written by Jakub Sawicki and published by Springer Nature. This book was released on 2019-11-30 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this thesis are synchronization phenomena in networks and their intrinsic control through time delay, which is ubiquitous in real-world systems ranging from physics and acoustics to neuroscience and engineering. We encounter synchronization everywhere and it can be either a helpful or a detrimental mechanism. In the first part, after a survey of complex nonlinear systems and networks, we show that a seemingly simple system of two organ pipes gives birth to complex bifurcation and synchronization scenarios. Going from a 2-oscillator system to a ring of oscillators, we encounter the intriguing phenomenon of chimera states which are partial synchrony patterns with coexisting domains of synchronized and desynchronized dynamics. For more than a decade scientist have tried to solve the puzzle of this spontaneous symmetry-breaking emerging in networks of identical elements. We provide an analysis of initial conditions and extend our model by the addition of time delay and fractal connectivities. In the second part, we investigate partial synchronization patterns in a neuronal network and explain dynamical asymmetry arising from the hemispheric structure of the human brain. A particular focus is on the novel scenario of partial relay synchronization in multiplex networks. Such networks allow for synchronization of the coherent domains of chimera states via a remote layer, whereas the incoherent domains remain desynchronized. The theoretical framework is demonstrated with different generic models.


Chimera States in Complex Networks

Chimera States in Complex Networks

Author: Eckehard Schöll

Publisher: Frontiers Media SA

Published: 2020-01-03

Total Pages: 148

ISBN-13: 288963311X

DOWNLOAD EBOOK


Book Synopsis Chimera States in Complex Networks by : Eckehard Schöll

Download or read book Chimera States in Complex Networks written by Eckehard Schöll and published by Frontiers Media SA. This book was released on 2020-01-03 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: