Physical Models for Semiconductor Devices

Physical Models for Semiconductor Devices

Author: John E. Carroll

Publisher: Hodder Education

Published: 1974

Total Pages: 280

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Physical Models for Semiconductor Devices by : John E. Carroll

Download or read book Physical Models for Semiconductor Devices written by John E. Carroll and published by Hodder Education. This book was released on 1974 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Physical Models of Semiconductor Quantum Devices

Physical Models of Semiconductor Quantum Devices

Author: Ying Fu

Publisher: Springer

Published: 2013-11-27

Total Pages: 271

ISBN-13: 1461551412

DOWNLOAD EBOOK

This detailed book addresses three main areas of solid state electronics, providing an insight into the state of the art in material and device research that will be of interest to all those involved in compound semiconductors.


Book Synopsis Physical Models of Semiconductor Quantum Devices by : Ying Fu

Download or read book Physical Models of Semiconductor Quantum Devices written by Ying Fu and published by Springer. This book was released on 2013-11-27 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed book addresses three main areas of solid state electronics, providing an insight into the state of the art in material and device research that will be of interest to all those involved in compound semiconductors.


Physical Models of Semiconductor Quantum Devices

Physical Models of Semiconductor Quantum Devices

Author: Ying Fu

Publisher: Springer Science & Business Media

Published: 2013-08-29

Total Pages: 416

ISBN-13: 9400771746

DOWNLOAD EBOOK

The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.


Book Synopsis Physical Models of Semiconductor Quantum Devices by : Ying Fu

Download or read book Physical Models of Semiconductor Quantum Devices written by Ying Fu and published by Springer Science & Business Media. This book was released on 2013-08-29 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.


Physical Models of Semiconductor Quantum Devices

Physical Models of Semiconductor Quantum Devices

Author: Ying Fu

Publisher: Springer

Published: 2011-09-02

Total Pages: 263

ISBN-13: 9781461551423

DOWNLOAD EBOOK

This detailed book addresses three main areas of solid state electronics, providing an insight into the state of the art in material and device research that will be of interest to all those involved in compound semiconductors.


Book Synopsis Physical Models of Semiconductor Quantum Devices by : Ying Fu

Download or read book Physical Models of Semiconductor Quantum Devices written by Ying Fu and published by Springer. This book was released on 2011-09-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed book addresses three main areas of solid state electronics, providing an insight into the state of the art in material and device research that will be of interest to all those involved in compound semiconductors.


Advanced Physical Models for Silicon Device Simulation

Advanced Physical Models for Silicon Device Simulation

Author: Andreas Schenk

Publisher: Springer Science & Business Media

Published: 1998-07-07

Total Pages: 384

ISBN-13: 9783211830529

DOWNLOAD EBOOK

From the reviews: "... this is a well produced book, written in a easy to read style, and will also be a very useful primer for someone starting out the field [...], and a useful source of reference for experienced users ..." Microelectronics Journal


Book Synopsis Advanced Physical Models for Silicon Device Simulation by : Andreas Schenk

Download or read book Advanced Physical Models for Silicon Device Simulation written by Andreas Schenk and published by Springer Science & Business Media. This book was released on 1998-07-07 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "... this is a well produced book, written in a easy to read style, and will also be a very useful primer for someone starting out the field [...], and a useful source of reference for experienced users ..." Microelectronics Journal


Advanced Physical Models for Silicon Device Simulation

Advanced Physical Models for Silicon Device Simulation

Author: Andreas Schenk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 370

ISBN-13: 370916494X

DOWNLOAD EBOOK

From the reviews: "... this is a well produced book, written in a easy to read style, and will also be a very useful primer for someone starting out the field [...], and a useful source of reference for experienced users ..." Microelectronics Journal


Book Synopsis Advanced Physical Models for Silicon Device Simulation by : Andreas Schenk

Download or read book Advanced Physical Models for Silicon Device Simulation written by Andreas Schenk and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "... this is a well produced book, written in a easy to read style, and will also be a very useful primer for someone starting out the field [...], and a useful source of reference for experienced users ..." Microelectronics Journal


Compound Semiconductor Device Modelling

Compound Semiconductor Device Modelling

Author: Christopher M. Snowden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 295

ISBN-13: 1447120485

DOWNLOAD EBOOK

Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.


Book Synopsis Compound Semiconductor Device Modelling by : Christopher M. Snowden

Download or read book Compound Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.


Introduction to Semiconductor Device Modelling

Introduction to Semiconductor Device Modelling

Author: Christopher M. Snowden

Publisher: World Scientific

Published: 1998

Total Pages: 242

ISBN-13: 9789810236939

DOWNLOAD EBOOK

This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.


Book Synopsis Introduction to Semiconductor Device Modelling by : Christopher M. Snowden

Download or read book Introduction to Semiconductor Device Modelling written by Christopher M. Snowden and published by World Scientific. This book was released on 1998 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.


Semiconductor Device Modelling

Semiconductor Device Modelling

Author: Christopher M. Snowden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 267

ISBN-13: 1447110331

DOWNLOAD EBOOK

Semiconductor device modelling has developed in recent years from being solely the domain of device physicists to span broader technological disciplines involved in device and electronic circuit design and develop ment. The rapid emergence of very high speed, high density integrated circuit technology and the drive towards high speed communications has meant that extremely small-scale device structures are used in contempor ary designs. The characterisation and analysis of these devices can no longer be satisfied by electrical measurements alone. Traditional equivalent circuit models and closed-form analytical models cannot always provide consis tently accurate results for all modes of operation of these very small devices. Furthermore, the highly competitive nature of the semiconductor industry has led to the need to minimise development costs and lead-time associated with introducing new designs. This has meant that there has been a greater demand for models capable of increasing our understanding of how these devices operate and capable of predicting accurate quantitative results. The desire to move towards computer aided design and expert systems has reinforced the need for models capable of representing device operation under DC, small-signal, large-signal and high frequency operation. It is also desirable to relate the physical structure of the device to the electrical performance. This demand for better models has led to the introduction of improved equivalent circuit models and a upsurge in interest in using physical models.


Book Synopsis Semiconductor Device Modelling by : Christopher M. Snowden

Download or read book Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor device modelling has developed in recent years from being solely the domain of device physicists to span broader technological disciplines involved in device and electronic circuit design and develop ment. The rapid emergence of very high speed, high density integrated circuit technology and the drive towards high speed communications has meant that extremely small-scale device structures are used in contempor ary designs. The characterisation and analysis of these devices can no longer be satisfied by electrical measurements alone. Traditional equivalent circuit models and closed-form analytical models cannot always provide consis tently accurate results for all modes of operation of these very small devices. Furthermore, the highly competitive nature of the semiconductor industry has led to the need to minimise development costs and lead-time associated with introducing new designs. This has meant that there has been a greater demand for models capable of increasing our understanding of how these devices operate and capable of predicting accurate quantitative results. The desire to move towards computer aided design and expert systems has reinforced the need for models capable of representing device operation under DC, small-signal, large-signal and high frequency operation. It is also desirable to relate the physical structure of the device to the electrical performance. This demand for better models has led to the introduction of improved equivalent circuit models and a upsurge in interest in using physical models.


Analysis and Simulation of Semiconductor Devices

Analysis and Simulation of Semiconductor Devices

Author: S. Selberherr

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 3709187524

DOWNLOAD EBOOK

The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.


Book Synopsis Analysis and Simulation of Semiconductor Devices by : S. Selberherr

Download or read book Analysis and Simulation of Semiconductor Devices written by S. Selberherr and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.