Plants and BioEnergy

Plants and BioEnergy

Author: Maureen C. McCann

Publisher: Springer Science & Business Media

Published: 2013-11-23

Total Pages: 287

ISBN-13: 1461493293

DOWNLOAD EBOOK

A country's vision for developing renewable and sustainable energy resources is typically propelled by three important drivers – security, cost, and environmental impact. The U.S. currently accounts for a quarter of the world’s total oil consumption, with domestic demands necessitating – at an ever growing cost – a net import of more than 50% of the oil used in this country. At the same time, Brazil, because of its forward thinking on energy strategy, is today energy independent. As emerging economies around the world increase their petroleum use by large margins and as large fractions of that new consumption are necessarily supplied from unstable parts of the world, the inevitable repercussions on petroleum-driven economies will continue to escalate. In addition, there is an unequivocal imperative to take immediate and aggressive measures to reduce net greenhouse gas emissions by decreasing fossil fuel consumption and increasing our use of carbon-neutral or carbon-negative fuels as well as improving efficiency of fuel use. Economic growth and development worldwide depend increasingly on secure supplies of reliable, affordable, clean energy. Together with its counterpart societies, was convened the First Pan-American Congress on Plants and BioEnergy, which was held in June, 2008, in Mérida, Mexico. Sponsored by the American Society of Plant Biologists, this congress was designed to initiate Pan-American research collaborations in energy biosciences. At that congress, the organizational committee committed themselves to continue the meeting biennially, resulting in the 2nd Pan-American Congress on Plants and BioEnergy to be held with the endorsement of ASPB, July 6-10, 2010, in São Paulo, Brazil. Whereas the 1st congress covered a broad range of topics that bioenergy impacted, the second congress will focus more on the advances in plant biology: the genetic improvement of energy crop plants, their fit into regional environments, and the development of a sustainable energy agriculture.


Book Synopsis Plants and BioEnergy by : Maureen C. McCann

Download or read book Plants and BioEnergy written by Maureen C. McCann and published by Springer Science & Business Media. This book was released on 2013-11-23 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: A country's vision for developing renewable and sustainable energy resources is typically propelled by three important drivers – security, cost, and environmental impact. The U.S. currently accounts for a quarter of the world’s total oil consumption, with domestic demands necessitating – at an ever growing cost – a net import of more than 50% of the oil used in this country. At the same time, Brazil, because of its forward thinking on energy strategy, is today energy independent. As emerging economies around the world increase their petroleum use by large margins and as large fractions of that new consumption are necessarily supplied from unstable parts of the world, the inevitable repercussions on petroleum-driven economies will continue to escalate. In addition, there is an unequivocal imperative to take immediate and aggressive measures to reduce net greenhouse gas emissions by decreasing fossil fuel consumption and increasing our use of carbon-neutral or carbon-negative fuels as well as improving efficiency of fuel use. Economic growth and development worldwide depend increasingly on secure supplies of reliable, affordable, clean energy. Together with its counterpart societies, was convened the First Pan-American Congress on Plants and BioEnergy, which was held in June, 2008, in Mérida, Mexico. Sponsored by the American Society of Plant Biologists, this congress was designed to initiate Pan-American research collaborations in energy biosciences. At that congress, the organizational committee committed themselves to continue the meeting biennially, resulting in the 2nd Pan-American Congress on Plants and BioEnergy to be held with the endorsement of ASPB, July 6-10, 2010, in São Paulo, Brazil. Whereas the 1st congress covered a broad range of topics that bioenergy impacted, the second congress will focus more on the advances in plant biology: the genetic improvement of energy crop plants, their fit into regional environments, and the development of a sustainable energy agriculture.


Handbook of Bioenergy Crop Plants

Handbook of Bioenergy Crop Plants

Author: Chittaranjan Kole

Publisher: CRC Press

Published: 2012-03-22

Total Pages: 874

ISBN-13: 1439816859

DOWNLOAD EBOOK

As the world's population is projected to reach 10 billion or more by 2100, devastating fossil fuel shortages loom in the future unless more renewable alternatives to energy are developed. Bioenergy, in the form of cellulosic biomass, starch, sugar, and oils from crop plants, has emerged as one of the cheaper, cleaner, and environmentally sustainab


Book Synopsis Handbook of Bioenergy Crop Plants by : Chittaranjan Kole

Download or read book Handbook of Bioenergy Crop Plants written by Chittaranjan Kole and published by CRC Press. This book was released on 2012-03-22 with total page 874 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world's population is projected to reach 10 billion or more by 2100, devastating fossil fuel shortages loom in the future unless more renewable alternatives to energy are developed. Bioenergy, in the form of cellulosic biomass, starch, sugar, and oils from crop plants, has emerged as one of the cheaper, cleaner, and environmentally sustainab


Bioenergy Research: Advances and Applications

Bioenergy Research: Advances and Applications

Author: Vijai G. Gupta

Publisher: Newnes

Published: 2013-12-05

Total Pages: 513

ISBN-13: 0444595643

DOWNLOAD EBOOK

Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each


Book Synopsis Bioenergy Research: Advances and Applications by : Vijai G. Gupta

Download or read book Bioenergy Research: Advances and Applications written by Vijai G. Gupta and published by Newnes. This book was released on 2013-12-05 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each


Phytoremediation Potential of Bioenergy Plants

Phytoremediation Potential of Bioenergy Plants

Author: Kuldeep Bauddh

Publisher: Springer

Published: 2017-03-29

Total Pages: 482

ISBN-13: 9811030847

DOWNLOAD EBOOK

The globally escalating population necessitates production of more goods and services to fulfil the expanding demands of human beings which resulted in urbanization and industrialization. Uncontrolled industrialization caused two major problems – energy crisis and accelerated environmental pollution throughout the world. Presently, there are technologies which have been proposed or shown to tackle both the problems. Researchers continue to seek more cost effective and environmentally beneficial pathways for problem solving. Plant kingdom comprises of species which have the potential to resolve the couple problem of pollution and energy. Plants are considered as a potential feedstock for development of renewable energy through biofuels. Another important aspect of plants is their capacity to sequester carbon dioxide and absorb, degrade, and stabilize environmental pollutants such as heavy metals, poly-aromatic hydrocarbons, poly-aromatic biphenyls, radioactive materials, and other chemicals. Thus, plants may be used to provide renewable energy generation and pollution mitigation. An approach that could amalgamate the two aspects can be achieved through phytoremediation (using plants to clean up polluted soil and water), and subsequent generation of energy from the phyto-remediator plants. This would be a major advance in achieving sustainability that focuses on optimizing ‘people’ (social issues), ‘planet’ (environmental issues), and ‘profit’ (financial issues). The “Phytoremediation-Cellulosic Biofuels” (PCB) process will be socially beneficial through reducing pollution impacts on people, ecologically beneficial through pollution abatement, and economically viable through providing revenue that supplies an energy source that is renewable and also provides less dependence on importing foreign energy (energy-independence). The utilization of green plants for pollution remediation and energy production will also tackle some other important global concerns like global climate change, ocean acidification, and land degradation through carbon sequestration, reduced emissions of other greenhouse gases, restoration of degraded lands and waters, and more. This book addresses the overall potential of major plants that have the potential to fulfil the dual purposes of phytoremediation and energy generation. The non-edible bioenergy plants that are explored for this dual objective include Jatropha curcas, Ricinus communis, Leucaena leucocephalla, Milletia pinnata, Canabis sativa, Azadirachta indica, and Acacia nilotica. The book addresses all possible aspects of phyto-remediaton and energy generation in a holistic way. The contributors are one of most authoritative experts in the field and have covered and compiled the best content most comprehensively. The book is going to be extremely useful for researchers in the area, research students, academicians and also for policy makers for an inclusive understanding and assessment of potential in plant kingdom to solve the dual problem of energy and pollution.


Book Synopsis Phytoremediation Potential of Bioenergy Plants by : Kuldeep Bauddh

Download or read book Phytoremediation Potential of Bioenergy Plants written by Kuldeep Bauddh and published by Springer. This book was released on 2017-03-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The globally escalating population necessitates production of more goods and services to fulfil the expanding demands of human beings which resulted in urbanization and industrialization. Uncontrolled industrialization caused two major problems – energy crisis and accelerated environmental pollution throughout the world. Presently, there are technologies which have been proposed or shown to tackle both the problems. Researchers continue to seek more cost effective and environmentally beneficial pathways for problem solving. Plant kingdom comprises of species which have the potential to resolve the couple problem of pollution and energy. Plants are considered as a potential feedstock for development of renewable energy through biofuels. Another important aspect of plants is their capacity to sequester carbon dioxide and absorb, degrade, and stabilize environmental pollutants such as heavy metals, poly-aromatic hydrocarbons, poly-aromatic biphenyls, radioactive materials, and other chemicals. Thus, plants may be used to provide renewable energy generation and pollution mitigation. An approach that could amalgamate the two aspects can be achieved through phytoremediation (using plants to clean up polluted soil and water), and subsequent generation of energy from the phyto-remediator plants. This would be a major advance in achieving sustainability that focuses on optimizing ‘people’ (social issues), ‘planet’ (environmental issues), and ‘profit’ (financial issues). The “Phytoremediation-Cellulosic Biofuels” (PCB) process will be socially beneficial through reducing pollution impacts on people, ecologically beneficial through pollution abatement, and economically viable through providing revenue that supplies an energy source that is renewable and also provides less dependence on importing foreign energy (energy-independence). The utilization of green plants for pollution remediation and energy production will also tackle some other important global concerns like global climate change, ocean acidification, and land degradation through carbon sequestration, reduced emissions of other greenhouse gases, restoration of degraded lands and waters, and more. This book addresses the overall potential of major plants that have the potential to fulfil the dual purposes of phytoremediation and energy generation. The non-edible bioenergy plants that are explored for this dual objective include Jatropha curcas, Ricinus communis, Leucaena leucocephalla, Milletia pinnata, Canabis sativa, Azadirachta indica, and Acacia nilotica. The book addresses all possible aspects of phyto-remediaton and energy generation in a holistic way. The contributors are one of most authoritative experts in the field and have covered and compiled the best content most comprehensively. The book is going to be extremely useful for researchers in the area, research students, academicians and also for policy makers for an inclusive understanding and assessment of potential in plant kingdom to solve the dual problem of energy and pollution.


Compendium of Bioenergy Plants

Compendium of Bioenergy Plants

Author: Eric Lam

Publisher: CRC Press

Published: 2016-01-05

Total Pages: 129

ISBN-13: 1498743390

DOWNLOAD EBOOK

This volume of the Bioenergy Plants compendium contains a collection of chapters that focus on the history, economics, and practical sciences related to sugarcane. As one of the key biofuel crops in the world that is under large-scale cultivation, sugarcane is attracting interests for its adoption and emulation worldwide. With a high ratio of energ


Book Synopsis Compendium of Bioenergy Plants by : Eric Lam

Download or read book Compendium of Bioenergy Plants written by Eric Lam and published by CRC Press. This book was released on 2016-01-05 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of the Bioenergy Plants compendium contains a collection of chapters that focus on the history, economics, and practical sciences related to sugarcane. As one of the key biofuel crops in the world that is under large-scale cultivation, sugarcane is attracting interests for its adoption and emulation worldwide. With a high ratio of energ


Handbook of Bioenergy Crops

Handbook of Bioenergy Crops

Author: N. El Bassam

Publisher: Earthscan

Published: 2010

Total Pages: 545

ISBN-13: 1849774781

DOWNLOAD EBOOK

This completely revised second edition includes new information on biomass in relation to climate change, new coverage of vital issues including the "food versus fuel" debate, and essential new information on "second generation" fuels and advances in conversion techniques. The book begins with a guide to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels. This is followed by an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. The book then goes on to cover all the main potential energy crops.


Book Synopsis Handbook of Bioenergy Crops by : N. El Bassam

Download or read book Handbook of Bioenergy Crops written by N. El Bassam and published by Earthscan. This book was released on 2010 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This completely revised second edition includes new information on biomass in relation to climate change, new coverage of vital issues including the "food versus fuel" debate, and essential new information on "second generation" fuels and advances in conversion techniques. The book begins with a guide to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels. This is followed by an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. The book then goes on to cover all the main potential energy crops.


Genetic Improvement of Bioenergy Crops

Genetic Improvement of Bioenergy Crops

Author: Wilfred Vermerris

Publisher: Springer

Published: 2010-10-29

Total Pages: 0

ISBN-13: 9781441924223

DOWNLOAD EBOOK

Ethanol as an alternative fuel is receiving a lot of attention because it addresses concerns related to dwindling oil supplies, energy independence, and climate change. The majority of the ethanol in the US is produced from corn starch. With the US Department of Energy’s target that 30% of the fuel in the US is produced from renewable resources by 2030, the anticipated demand for corn starch will quickly exceed the current production of corn. This, plus the concern that less grain will become available for food and feed purposes, necessitates the use of other feedstocks for the production of ethanol. For the very same reasons, there is increasing research activity and growing interest in many other biomass crops. Genetic Improvement of Bio-Energy Crops focuses on the production of ethanol from lignocellulosic biomass, which includes corn stover, biomass from dedicated annual and perennial energy crops, and trees as well as a number of important biomass crops. The biomass is typically pretreated through thermochemical processing to make it more amenable to hydrolysis with cellulolytic enzymes. The enzymatic hydrolysis yields monomeric sugars that can be fermented to ethanol by micro-organisms. While much emphasis has been placed on the optimization of thermo-chemical pretreatment processes, production of more efficient hydrolytic enzymes, and the development of robust microbial strains, relatively little effort has been dedicated to the improvement of the biomass itself.


Book Synopsis Genetic Improvement of Bioenergy Crops by : Wilfred Vermerris

Download or read book Genetic Improvement of Bioenergy Crops written by Wilfred Vermerris and published by Springer. This book was released on 2010-10-29 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ethanol as an alternative fuel is receiving a lot of attention because it addresses concerns related to dwindling oil supplies, energy independence, and climate change. The majority of the ethanol in the US is produced from corn starch. With the US Department of Energy’s target that 30% of the fuel in the US is produced from renewable resources by 2030, the anticipated demand for corn starch will quickly exceed the current production of corn. This, plus the concern that less grain will become available for food and feed purposes, necessitates the use of other feedstocks for the production of ethanol. For the very same reasons, there is increasing research activity and growing interest in many other biomass crops. Genetic Improvement of Bio-Energy Crops focuses on the production of ethanol from lignocellulosic biomass, which includes corn stover, biomass from dedicated annual and perennial energy crops, and trees as well as a number of important biomass crops. The biomass is typically pretreated through thermochemical processing to make it more amenable to hydrolysis with cellulolytic enzymes. The enzymatic hydrolysis yields monomeric sugars that can be fermented to ethanol by micro-organisms. While much emphasis has been placed on the optimization of thermo-chemical pretreatment processes, production of more efficient hydrolytic enzymes, and the development of robust microbial strains, relatively little effort has been dedicated to the improvement of the biomass itself.


Bioprospecting of Plant Biodiversity for Industrial Molecules

Bioprospecting of Plant Biodiversity for Industrial Molecules

Author: Santosh Kumar Upadhyay

Publisher: John Wiley & Sons

Published: 2021-06-22

Total Pages: 468

ISBN-13: 111971723X

DOWNLOAD EBOOK

BIOPROSPECTING OF PLANT BIODIVERSITY FOR INDUSTRIAL MOLECULES A comprehensive collection of recent translational research on bioresource utilization and ecological sustainability Bioprospecting of Plant Biodiversity for Industrial Molecules provides an up-to-date overview of the ongoing search for biodiverse organic compounds for use in pharmaceuticals, bioceuticals, agriculture, and other commercial applications. Bringing together work from a panel of international contributors, this comprehensive monograph covers natural compounds of plants, endophyte enzymes and their applications in industry, plant bioprospecting in cosmetics, marine bioprospecting of seaweeds, and more. Providing global perspectives on bioprospecting of plant biodiversity, the authors present research on enzymes, mineral micro-nutrients, biopesticides, algal biomass, and other bioactive molecules. In-depth chapters assess the health impacts and ecological sustainability of the various biomolecules and identify existing and possible applications ranging from ecological restoration to production of essential oils and cosmetics. Other topics include, bio-energy crops as alternative fuel resources, the role of plants in phytoremediation of industrial waste, and the industrial applications of endophyte enzymes. This comprehensive resource: Includes a through introduction to plant biodiversity and bioprospecting Will further the knowledge of application of different plants and improve research investigation techniques. Summarizes novel approaches for researchers in food science, microbiology, biochemistry, and biotechnology Bioprospecting of Plant Biodiversity for Industrial Molecules is an indispensable compendium of biological research for scientists, researchers, graduate and postgraduate students, and academics in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology.


Book Synopsis Bioprospecting of Plant Biodiversity for Industrial Molecules by : Santosh Kumar Upadhyay

Download or read book Bioprospecting of Plant Biodiversity for Industrial Molecules written by Santosh Kumar Upadhyay and published by John Wiley & Sons. This book was released on 2021-06-22 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: BIOPROSPECTING OF PLANT BIODIVERSITY FOR INDUSTRIAL MOLECULES A comprehensive collection of recent translational research on bioresource utilization and ecological sustainability Bioprospecting of Plant Biodiversity for Industrial Molecules provides an up-to-date overview of the ongoing search for biodiverse organic compounds for use in pharmaceuticals, bioceuticals, agriculture, and other commercial applications. Bringing together work from a panel of international contributors, this comprehensive monograph covers natural compounds of plants, endophyte enzymes and their applications in industry, plant bioprospecting in cosmetics, marine bioprospecting of seaweeds, and more. Providing global perspectives on bioprospecting of plant biodiversity, the authors present research on enzymes, mineral micro-nutrients, biopesticides, algal biomass, and other bioactive molecules. In-depth chapters assess the health impacts and ecological sustainability of the various biomolecules and identify existing and possible applications ranging from ecological restoration to production of essential oils and cosmetics. Other topics include, bio-energy crops as alternative fuel resources, the role of plants in phytoremediation of industrial waste, and the industrial applications of endophyte enzymes. This comprehensive resource: Includes a through introduction to plant biodiversity and bioprospecting Will further the knowledge of application of different plants and improve research investigation techniques. Summarizes novel approaches for researchers in food science, microbiology, biochemistry, and biotechnology Bioprospecting of Plant Biodiversity for Industrial Molecules is an indispensable compendium of biological research for scientists, researchers, graduate and postgraduate students, and academics in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology.


Biofuels and Bioenergy

Biofuels and Bioenergy

Author: Jin Zhang

Publisher: Frontiers Media SA

Published: 2021-01-18

Total Pages: 182

ISBN-13: 2889663922

DOWNLOAD EBOOK


Book Synopsis Biofuels and Bioenergy by : Jin Zhang

Download or read book Biofuels and Bioenergy written by Jin Zhang and published by Frontiers Media SA. This book was released on 2021-01-18 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Plant Cell Walls

Plant Cell Walls

Author: Nicholas C. Carpita

Publisher: Springer

Published: 2012-12-06

Total Pages: 333

ISBN-13: 9401006687

DOWNLOAD EBOOK

This work is a comprehensive collection of articles that cover aspects of cell wall research in the genomic era. Some 2500 genes are involved in some way in wall biogenesis and turnover, from generation of substrates, to polysaccharide and lignin synthesis, assembly, and rearrangement in the wall. Although a great number of genes and gene families remain to be characterized, this issue provides a census of the genes that have been discovered so far. The articles comprising this issue not only illustrate the enormous progress made in identifying the wealth of wall-related genes but they also show the future directions and how far we have to go. As cell walls are an enormously important source of raw material, we anticipate that cell-wall-related genes are of significant economic importance. Examples include the modification of pectin-cross-linking or cell-cell adhesion to increase shelf life of fruits and vegetables, the enhancement of dietary fiber contents of cereals, the improvement of yield and quality of fibers, and the relative allocation of carbon to wall biomass for use as biofuels. The book is intended for academic and professional scientists working in the area of plant biology as well as material chemists and engineers, and food scientists who define new ways to use cell walls.


Book Synopsis Plant Cell Walls by : Nicholas C. Carpita

Download or read book Plant Cell Walls written by Nicholas C. Carpita and published by Springer. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is a comprehensive collection of articles that cover aspects of cell wall research in the genomic era. Some 2500 genes are involved in some way in wall biogenesis and turnover, from generation of substrates, to polysaccharide and lignin synthesis, assembly, and rearrangement in the wall. Although a great number of genes and gene families remain to be characterized, this issue provides a census of the genes that have been discovered so far. The articles comprising this issue not only illustrate the enormous progress made in identifying the wealth of wall-related genes but they also show the future directions and how far we have to go. As cell walls are an enormously important source of raw material, we anticipate that cell-wall-related genes are of significant economic importance. Examples include the modification of pectin-cross-linking or cell-cell adhesion to increase shelf life of fruits and vegetables, the enhancement of dietary fiber contents of cereals, the improvement of yield and quality of fibers, and the relative allocation of carbon to wall biomass for use as biofuels. The book is intended for academic and professional scientists working in the area of plant biology as well as material chemists and engineers, and food scientists who define new ways to use cell walls.