Polymerized Ionic Liquids

Polymerized Ionic Liquids

Author: Ali Eftekhari

Publisher: Royal Society of Chemistry

Published: 2017-09-18

Total Pages: 541

ISBN-13: 1782629602

DOWNLOAD EBOOK

The applications of ionic liquids can be enormously expanded by arranging the organic ions in the form a polymer architecture. Polymerized ionic liquids (PILs), also known as poly(ionic liquid)s or polymeric ionic liquids, provide almost all features of ionic polymers plus a rare versatility in design. Written by leading authors, the present book provides a comprehensive overview of this exciting area, discussing various aspects of PILs and their applications as smart materials. The book will appeal to a broad readership including students and researchers from materials science, polymer science, chemistry, and physics.


Book Synopsis Polymerized Ionic Liquids by : Ali Eftekhari

Download or read book Polymerized Ionic Liquids written by Ali Eftekhari and published by Royal Society of Chemistry. This book was released on 2017-09-18 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: The applications of ionic liquids can be enormously expanded by arranging the organic ions in the form a polymer architecture. Polymerized ionic liquids (PILs), also known as poly(ionic liquid)s or polymeric ionic liquids, provide almost all features of ionic polymers plus a rare versatility in design. Written by leading authors, the present book provides a comprehensive overview of this exciting area, discussing various aspects of PILs and their applications as smart materials. The book will appeal to a broad readership including students and researchers from materials science, polymer science, chemistry, and physics.


Polymerized Ionic Liquids

Polymerized Ionic Liquids

Author: Ali Eftekhari

Publisher: Royal Society of Chemistry

Published: 2017-09-18

Total Pages: 564

ISBN-13: 1788012216

DOWNLOAD EBOOK

The applications of ionic liquids can be enormously expanded by arranging the organic ions in the form of a polymer architecture. Polymerized ionic liquids (PILs), also known as poly(ionic liquid)s or polymeric ionic liquids, provide almost all features of ionic polymers plus a rare versatility in design. The mechanical properties of the solid or solid-like polymers can also be controlled by external stimuli, the basis for designing smart materials. Known for over four decades, PILs are a member of the ionic polymers family. Although the previous forms of ionic polymers have a partial ionicity, PILs are entirely composed of ions. Therefore, they offer a better flexibility for designing a responsive architecture as smart materials. Despite the terminology, PILs can be synthesized from solid organic ionic salts since the monomer liquidity is not a requirement for the polymerization process. Ionicity can also be induced to a neutral polymer by post-polymerization treatments. This is indeed an emerging field whose capabilities have been somehow overshadowed by the popularity of ionic liquids. However, recent reports in the literature have shown impressive potentials for the future. Written by leading authors, the present book provides a comprehensive overview of this exciting area, discussing various aspects of PILs and their applications as smart materials. Owing to the novelty of this area of research, the book will appeal to a broad readership including students and researchers from materials science, polymer science, chemistry, and physics.


Book Synopsis Polymerized Ionic Liquids by : Ali Eftekhari

Download or read book Polymerized Ionic Liquids written by Ali Eftekhari and published by Royal Society of Chemistry. This book was released on 2017-09-18 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The applications of ionic liquids can be enormously expanded by arranging the organic ions in the form of a polymer architecture. Polymerized ionic liquids (PILs), also known as poly(ionic liquid)s or polymeric ionic liquids, provide almost all features of ionic polymers plus a rare versatility in design. The mechanical properties of the solid or solid-like polymers can also be controlled by external stimuli, the basis for designing smart materials. Known for over four decades, PILs are a member of the ionic polymers family. Although the previous forms of ionic polymers have a partial ionicity, PILs are entirely composed of ions. Therefore, they offer a better flexibility for designing a responsive architecture as smart materials. Despite the terminology, PILs can be synthesized from solid organic ionic salts since the monomer liquidity is not a requirement for the polymerization process. Ionicity can also be induced to a neutral polymer by post-polymerization treatments. This is indeed an emerging field whose capabilities have been somehow overshadowed by the popularity of ionic liquids. However, recent reports in the literature have shown impressive potentials for the future. Written by leading authors, the present book provides a comprehensive overview of this exciting area, discussing various aspects of PILs and their applications as smart materials. Owing to the novelty of this area of research, the book will appeal to a broad readership including students and researchers from materials science, polymer science, chemistry, and physics.


Electrochemical Aspects of Ionic Liquids

Electrochemical Aspects of Ionic Liquids

Author: Hiroyuki Ohno

Publisher: John Wiley & Sons

Published: 2011-03-03

Total Pages: 393

ISBN-13: 1118003349

DOWNLOAD EBOOK

The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liquids on interfaces and on the electrochemical double layer, among other topics.


Book Synopsis Electrochemical Aspects of Ionic Liquids by : Hiroyuki Ohno

Download or read book Electrochemical Aspects of Ionic Liquids written by Hiroyuki Ohno and published by John Wiley & Sons. This book was released on 2011-03-03 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liquids on interfaces and on the electrochemical double layer, among other topics.


Molecular Design of Polymerized Ionic Liquids

Molecular Design of Polymerized Ionic Liquids

Author: Gabriel Eduardo Sanoja

Publisher:

Published: 2016

Total Pages: 105

ISBN-13:

DOWNLOAD EBOOK

Polymerized ionic liquids are an emerging class of functional materials with ionic liquid moieties covalently attached to a polymer backbone. As such, they synergistically combine the structural hierarchy of polymers with the versatile physicochemical properties of ionic liquids. Unlike other ion-containing polymers that are typically constrained to high glass transition temperatures, polymerized ionic liquids can exhibit low glass transition temperatures due to weak electrostatic interactions even at high charge fractions. Promising applications relevant to electrochemical energy conversion and CO2 capture and sequestration have been demonstrated for polymerized ionic liquids, but a molecular design strategy that allows for elucidation of their structure-property relationships is yet to be developed. A combination of anionic polymerization, click chemistry, and ion metathesis allows for fine and independent control over polymer properties including the number of repeat units, fraction of ionic liquid moieties, composition, and architecture. This strategy has been exploited to elucidate the effect of lamellar domain spacing on the ionic conductivity of block copolymers based on hydrated protic polymerized ionic liquids. The conductivity relationship demonstrated in this study suggests that a mechanically robust material can be designed without compromising its ability to transport ions. The vast set of ion pair combinations in polymerized liquids provides a unique opportunity to develop functional materials where properties can be controlled with subtle changes in molecular structure via ion metathesis. We illustrate the case of a polymerized ionic liquid that combines the low toxicity and macromolecular dimensions of poly(ethylene glycol) with the magnetic functionality of ion pairs containing iron(III). This material can yield novel theranostic agents with controlled residence time within the human body, and paramagnetic functionality to enhance 1H nuclei relaxation rate required for medical imaging. Finally, the molecular design strategy is expanded to incorporate ion pairs based on metal-ligand coordination bonds between cations and imidazole moieties tethered to the polymer backbone. This illustrates a general approach for using chelating polymers with appropriate metal-ligand interactions to design high conductivity and tunable modulus polymer electrolytes.


Book Synopsis Molecular Design of Polymerized Ionic Liquids by : Gabriel Eduardo Sanoja

Download or read book Molecular Design of Polymerized Ionic Liquids written by Gabriel Eduardo Sanoja and published by . This book was released on 2016 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymerized ionic liquids are an emerging class of functional materials with ionic liquid moieties covalently attached to a polymer backbone. As such, they synergistically combine the structural hierarchy of polymers with the versatile physicochemical properties of ionic liquids. Unlike other ion-containing polymers that are typically constrained to high glass transition temperatures, polymerized ionic liquids can exhibit low glass transition temperatures due to weak electrostatic interactions even at high charge fractions. Promising applications relevant to electrochemical energy conversion and CO2 capture and sequestration have been demonstrated for polymerized ionic liquids, but a molecular design strategy that allows for elucidation of their structure-property relationships is yet to be developed. A combination of anionic polymerization, click chemistry, and ion metathesis allows for fine and independent control over polymer properties including the number of repeat units, fraction of ionic liquid moieties, composition, and architecture. This strategy has been exploited to elucidate the effect of lamellar domain spacing on the ionic conductivity of block copolymers based on hydrated protic polymerized ionic liquids. The conductivity relationship demonstrated in this study suggests that a mechanically robust material can be designed without compromising its ability to transport ions. The vast set of ion pair combinations in polymerized liquids provides a unique opportunity to develop functional materials where properties can be controlled with subtle changes in molecular structure via ion metathesis. We illustrate the case of a polymerized ionic liquid that combines the low toxicity and macromolecular dimensions of poly(ethylene glycol) with the magnetic functionality of ion pairs containing iron(III). This material can yield novel theranostic agents with controlled residence time within the human body, and paramagnetic functionality to enhance 1H nuclei relaxation rate required for medical imaging. Finally, the molecular design strategy is expanded to incorporate ion pairs based on metal-ligand coordination bonds between cations and imidazole moieties tethered to the polymer backbone. This illustrates a general approach for using chelating polymers with appropriate metal-ligand interactions to design high conductivity and tunable modulus polymer electrolytes.


Ionic Liquids in Polymer Systems

Ionic Liquids in Polymer Systems

Author: Robin D. Rogers

Publisher:

Published: 2005

Total Pages: 224

ISBN-13:

DOWNLOAD EBOOK

This book includes manuscripts from well-recognized international research groups that have taken different approaches to using ionic liquids in a variety of polymer applications. The chapters on polymer synthesis cover traditional free radical polymerizations, which have been shown to progress rapidly and yield high molecular weight polymers, and reverse atom transfer polymerizations. The ability to tune molecular weights and synthesize block copolymers has been attributed to long free radical lifetimes in ionic liquids. Other chapters cover a variety of uses for ionic liquids in polymer processing, designing specific material properties, and creating novel composites, such as ion gels and ionic liquid-carbon nanotube constructs. This book represents a new and exciting field in polymer chemistry and physics, and is growing rapidly as more fundamental knowledge of ionic liquids is uncovered.


Book Synopsis Ionic Liquids in Polymer Systems by : Robin D. Rogers

Download or read book Ionic Liquids in Polymer Systems written by Robin D. Rogers and published by . This book was released on 2005 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes manuscripts from well-recognized international research groups that have taken different approaches to using ionic liquids in a variety of polymer applications. The chapters on polymer synthesis cover traditional free radical polymerizations, which have been shown to progress rapidly and yield high molecular weight polymers, and reverse atom transfer polymerizations. The ability to tune molecular weights and synthesize block copolymers has been attributed to long free radical lifetimes in ionic liquids. Other chapters cover a variety of uses for ionic liquids in polymer processing, designing specific material properties, and creating novel composites, such as ion gels and ionic liquid-carbon nanotube constructs. This book represents a new and exciting field in polymer chemistry and physics, and is growing rapidly as more fundamental knowledge of ionic liquids is uncovered.


Applications of Ionic Liquids in Polymer Science and Technology

Applications of Ionic Liquids in Polymer Science and Technology

Author: David Mecerreyes

Publisher: Springer

Published: 2015-04-08

Total Pages: 392

ISBN-13: 366244903X

DOWNLOAD EBOOK

This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents. The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive materials, smart surfaces, and a countless set range of emerging applications in different fields such as energy, optoelectronics, analytical chemistry, biotechnology, nanomedicine or catalysis.


Book Synopsis Applications of Ionic Liquids in Polymer Science and Technology by : David Mecerreyes

Download or read book Applications of Ionic Liquids in Polymer Science and Technology written by David Mecerreyes and published by Springer. This book was released on 2015-04-08 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents. The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive materials, smart surfaces, and a countless set range of emerging applications in different fields such as energy, optoelectronics, analytical chemistry, biotechnology, nanomedicine or catalysis.


Ionic Polymer Metal Composites (IMPCs)

Ionic Polymer Metal Composites (IMPCs)

Author: Mohsen Shahinpoor

Publisher: Royal Society of Chemistry

Published: 2016

Total Pages: 458

ISBN-13: 1782627219

DOWNLOAD EBOOK

A comprehensive resource on ionic polymer metal composites (IPMCs) edited by the leading authority on the subject.


Book Synopsis Ionic Polymer Metal Composites (IMPCs) by : Mohsen Shahinpoor

Download or read book Ionic Polymer Metal Composites (IMPCs) written by Mohsen Shahinpoor and published by Royal Society of Chemistry. This book was released on 2016 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource on ionic polymer metal composites (IPMCs) edited by the leading authority on the subject.


Advanced Applications of Ionic Liquids

Advanced Applications of Ionic Liquids

Author: Jamal Akhter Siddique

Publisher: Elsevier

Published: 2022-11-02

Total Pages: 569

ISBN-13: 0323984002

DOWNLOAD EBOOK

Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications. Covers all industrial aspects and advanced applications of ionic liquids (ILs) Discusses the advanced applications of ILs across multiple fields, including industrial chemistry and chemical engineering Includes a discussion of the use of ionic liquids in functional polymers, with applications for catalysis, energy conservation, sensors, and more


Book Synopsis Advanced Applications of Ionic Liquids by : Jamal Akhter Siddique

Download or read book Advanced Applications of Ionic Liquids written by Jamal Akhter Siddique and published by Elsevier. This book was released on 2022-11-02 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications. Covers all industrial aspects and advanced applications of ionic liquids (ILs) Discusses the advanced applications of ILs across multiple fields, including industrial chemistry and chemical engineering Includes a discussion of the use of ionic liquids in functional polymers, with applications for catalysis, energy conservation, sensors, and more


Recent Advances in Ionic Liquids

Recent Advances in Ionic Liquids

Author: Mohammed Rahman

Publisher: BoD – Books on Demand

Published: 2018-09-26

Total Pages: 194

ISBN-13: 1789841178

DOWNLOAD EBOOK

Recent Advances in Ionic Liquids contains research on the preparation, characterization, and potential applications of stable ionic liquids (ILs). ILs are a class of low- and stable-melting point, ionic compounds that have a variety of properties allowing many of them to be sustainable green solvents. It is promising novel research from top to bottom and has received a lot of interest over the last few decades. It covers the advanced topics of physical, catalytic, chemical, polymeric, and potential applications of ILs. This book features interesting reports on cutting-edge science and technology related to the preparation, characterization, polymerization, and potential applications of ILs. This potentially unique work offers various approaches on the R


Book Synopsis Recent Advances in Ionic Liquids by : Mohammed Rahman

Download or read book Recent Advances in Ionic Liquids written by Mohammed Rahman and published by BoD – Books on Demand. This book was released on 2018-09-26 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Advances in Ionic Liquids contains research on the preparation, characterization, and potential applications of stable ionic liquids (ILs). ILs are a class of low- and stable-melting point, ionic compounds that have a variety of properties allowing many of them to be sustainable green solvents. It is promising novel research from top to bottom and has received a lot of interest over the last few decades. It covers the advanced topics of physical, catalytic, chemical, polymeric, and potential applications of ILs. This book features interesting reports on cutting-edge science and technology related to the preparation, characterization, polymerization, and potential applications of ILs. This potentially unique work offers various approaches on the R


Investigations Into Ion Transport Properties of Polymerized Ionic Liquids and Related Materials

Investigations Into Ion Transport Properties of Polymerized Ionic Liquids and Related Materials

Author: Jordan Reynolds Keith

Publisher:

Published: 2019

Total Pages: 464

ISBN-13:

DOWNLOAD EBOOK

The body of work on polymerized ionic liquids has been growing rapidly in recent years as researchers expand the synthesis space to achieve novel membrane materials with high conductivity, excellent mechanical stability, and high transference number. Despite progress in identifying specific new polymers and useful properties, there has been limited agreement over the mechanism for ion transport in these materials. It is essential that we resolve said mechanism for polymerized-ionic-liquid conduction, with the goal of streamlining future material design. Molecular dynamics is an excellent tool for analyzing local coordination behavior, ion-hopping pathways, and other phenomena of length- and time-scales that are currently inaccessible to direct experimental observation. Ion transport is seen to proceed via a "climbing the ladder" mechanism involving the formation and breaking of ion-association pairs with, on average, four polymerized ions from two polymer chains. This results in a link between ion-association lifetime and diffusivity for chemically similar polymerized ionic liquids, a feature that distinguishes polymerized ionic liquids from a broad class of polymer electrolytes and low fragility ionomers. This is also shown to be the case for a set of backbone-polymerized ionic liquids, when compared to a chemically similar pendent-polymerized ionic liquid. This is particularly interesting because the pendent architectural motif proves to have significantly higher reversibility of ion-hopping events. The application of design rules inspired by this research has already led to the experimental discovery of highly decoupled polymerized ionic liquids with excellent conductivity at ambient temperature. Parametric simulation studies of poly(vinylimidazolium) polymerized ionic liquids and counterion variants have revealed a decoupling of ion mobility from polymer segmental dynamics. Small counterions are generally more decoupled, but results show that size is not the sole arbiter. For this set of different chemical components, encompassed by the anionic study, ion-association relaxation time, rather than lifetime, was proven to better correlate with diffusivity. Similar physics is observed between polymerized ionic liquids and salt-doped polymerized zwitterions for the population of mobile ions whose polymerized counter-charge is located on the end of a monomeric pendant. However, the cage-relaxation timescale appears to correlate better with diffusivity for the opposite ion in such materials


Book Synopsis Investigations Into Ion Transport Properties of Polymerized Ionic Liquids and Related Materials by : Jordan Reynolds Keith

Download or read book Investigations Into Ion Transport Properties of Polymerized Ionic Liquids and Related Materials written by Jordan Reynolds Keith and published by . This book was released on 2019 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The body of work on polymerized ionic liquids has been growing rapidly in recent years as researchers expand the synthesis space to achieve novel membrane materials with high conductivity, excellent mechanical stability, and high transference number. Despite progress in identifying specific new polymers and useful properties, there has been limited agreement over the mechanism for ion transport in these materials. It is essential that we resolve said mechanism for polymerized-ionic-liquid conduction, with the goal of streamlining future material design. Molecular dynamics is an excellent tool for analyzing local coordination behavior, ion-hopping pathways, and other phenomena of length- and time-scales that are currently inaccessible to direct experimental observation. Ion transport is seen to proceed via a "climbing the ladder" mechanism involving the formation and breaking of ion-association pairs with, on average, four polymerized ions from two polymer chains. This results in a link between ion-association lifetime and diffusivity for chemically similar polymerized ionic liquids, a feature that distinguishes polymerized ionic liquids from a broad class of polymer electrolytes and low fragility ionomers. This is also shown to be the case for a set of backbone-polymerized ionic liquids, when compared to a chemically similar pendent-polymerized ionic liquid. This is particularly interesting because the pendent architectural motif proves to have significantly higher reversibility of ion-hopping events. The application of design rules inspired by this research has already led to the experimental discovery of highly decoupled polymerized ionic liquids with excellent conductivity at ambient temperature. Parametric simulation studies of poly(vinylimidazolium) polymerized ionic liquids and counterion variants have revealed a decoupling of ion mobility from polymer segmental dynamics. Small counterions are generally more decoupled, but results show that size is not the sole arbiter. For this set of different chemical components, encompassed by the anionic study, ion-association relaxation time, rather than lifetime, was proven to better correlate with diffusivity. Similar physics is observed between polymerized ionic liquids and salt-doped polymerized zwitterions for the population of mobile ions whose polymerized counter-charge is located on the end of a monomeric pendant. However, the cage-relaxation timescale appears to correlate better with diffusivity for the opposite ion in such materials