Prediction and Calculation of Crystal Structures

Prediction and Calculation of Crystal Structures

Author: Sule Atahan-Evrenk

Publisher: Springer

Published: 2014-05-06

Total Pages: 299

ISBN-13: 331905774X

DOWNLOAD EBOOK

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.


Book Synopsis Prediction and Calculation of Crystal Structures by : Sule Atahan-Evrenk

Download or read book Prediction and Calculation of Crystal Structures written by Sule Atahan-Evrenk and published by Springer. This book was released on 2014-05-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.


First-Principles Prediction of Structures and Properties in Crystals

First-Principles Prediction of Structures and Properties in Crystals

Author: Dominik Kurzydlowsk

Publisher: MDPI

Published: 2019-10-25

Total Pages: 128

ISBN-13: 3039216708

DOWNLOAD EBOOK

The term “first-principles calculations” is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from ‘first principles’, i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate “first-principles” calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations—all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.


Book Synopsis First-Principles Prediction of Structures and Properties in Crystals by : Dominik Kurzydlowsk

Download or read book First-Principles Prediction of Structures and Properties in Crystals written by Dominik Kurzydlowsk and published by MDPI. This book was released on 2019-10-25 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term “first-principles calculations” is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from ‘first principles’, i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate “first-principles” calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations—all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.


Methods and Applications of Crystal Structure Prediction

Methods and Applications of Crystal Structure Prediction

Author: Royal Society of Chemistry

Publisher: Faraday Discussions

Published: 2018

Total Pages: 668

ISBN-13: 9781788011709

DOWNLOAD EBOOK

This volume gathers key researchers representing the full scientific scope of the crystal structure prediction.


Book Synopsis Methods and Applications of Crystal Structure Prediction by : Royal Society of Chemistry

Download or read book Methods and Applications of Crystal Structure Prediction written by Royal Society of Chemistry and published by Faraday Discussions. This book was released on 2018 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers key researchers representing the full scientific scope of the crystal structure prediction.


Methods and Applications of Crystal Structure Prediction

Methods and Applications of Crystal Structure Prediction

Author:

Publisher:

Published: 2018

Total Pages: 666

ISBN-13:

DOWNLOAD EBOOK

The prediction of crystal structures from first principles has been one of the grand challenges for computational methods in chemistry and materials science. The goal of being able to reliably predict crystal structures at an atomistic level of detail, given only the chemical composition as input, presents several challenges. A solution to the crystal structure prediction challenge requires advances in several areas of computational chemistry. This volume gathers key researchers representing the full scientific scope of the topic, including the developers of methods and software, those developing the application of the methods and interested experimentalists who may benefit from advances in predictive computational methods. This volume will appeal to researchers from computational chemistry, informatics, physics and materials science. Applications of crystal structure prediction methods also cover several fields, including crystallography, crystal engineering, mineralogy and pharmaceutical materials. The topics covered in this volume include: Structure searching methods ; Crystal structure evaluation: calculating relative stabilities and other criteria ; Applications of crystal structure prediction: organic molecular structures ; Applications of crystal structure prediction: inorganic and network structures.


Book Synopsis Methods and Applications of Crystal Structure Prediction by :

Download or read book Methods and Applications of Crystal Structure Prediction written by and published by . This book was released on 2018 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prediction of crystal structures from first principles has been one of the grand challenges for computational methods in chemistry and materials science. The goal of being able to reliably predict crystal structures at an atomistic level of detail, given only the chemical composition as input, presents several challenges. A solution to the crystal structure prediction challenge requires advances in several areas of computational chemistry. This volume gathers key researchers representing the full scientific scope of the topic, including the developers of methods and software, those developing the application of the methods and interested experimentalists who may benefit from advances in predictive computational methods. This volume will appeal to researchers from computational chemistry, informatics, physics and materials science. Applications of crystal structure prediction methods also cover several fields, including crystallography, crystal engineering, mineralogy and pharmaceutical materials. The topics covered in this volume include: Structure searching methods ; Crystal structure evaluation: calculating relative stabilities and other criteria ; Applications of crystal structure prediction: organic molecular structures ; Applications of crystal structure prediction: inorganic and network structures.


Modern Methods of Crystal Structure Prediction

Modern Methods of Crystal Structure Prediction

Author: Artem R. Oganov

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 378

ISBN-13: 352764377X

DOWNLOAD EBOOK

Gathering leading specialists in the field of structure prediction, this book provides a unique view of this complex and rapidly developing field, reflecting the numerous viewpoints of the different authors. A summary of the major achievements over the last few years and of the challenges still remaining makes this monograph very timely.


Book Synopsis Modern Methods of Crystal Structure Prediction by : Artem R. Oganov

Download or read book Modern Methods of Crystal Structure Prediction written by Artem R. Oganov and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathering leading specialists in the field of structure prediction, this book provides a unique view of this complex and rapidly developing field, reflecting the numerous viewpoints of the different authors. A summary of the major achievements over the last few years and of the challenges still remaining makes this monograph very timely.


Polymorph Prediction of Organic (co-) Crystal Structures from a Thermodynamic Perspective

Polymorph Prediction of Organic (co-) Crystal Structures from a Thermodynamic Perspective

Author: Hin Chung Stephen Chan

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A molecule can crystallise in more than one crystal structure, a common phenomenon in organic compounds known as polymorphism. Different polymorphic forms may have significantly different physical properties, and a reliable prediction would be beneficial to the pharmaceutical industry. However, crystal structure prediction (CSP) based on the knowledge of the chemical structure had long been considered impossible. Previous failures of some CSP attempts led to speculation that the thermodynamic calculations in CSP methodologies failed to predict the kinetically favoured structures. Similarly, regarding the stabilities of co-crystals relative to their pure components, the results from lattice energy calculations and full CSP studies were inconclusive. In this thesis, these problems are addressed using the state-of-the-art CSP methodology implemented in the GRACE software. Firstly, it is shown that the low-energy predicted structures of four organic molecules, which have previously been considered difficult for CSP, correspond to their experimental structures. The possible outcomes of crystallisation can be reliably predicted by sufficiently accurate thermodynamic calculations. Then, the polymorphism of 5- chloroaspirin is investigated theoretically. The order of polymorph stability is predicted correctly and the isostructural relationships between a number of predicted structures and the experimental structures of other aspirin derivatives are established. Regarding the stabilities of co-crystals, 99 out of 102 co-crystals and salts of nicotinamide, isonicotinamide and picolinamide reported in the Cambridge Structural Database (CSD) are found to be more stable than their corresponding co-formers. Finally, full CSP studies of two co-crystal systems are conducted to explain why the co-crystals are not easily obtained experimentally.


Book Synopsis Polymorph Prediction of Organic (co-) Crystal Structures from a Thermodynamic Perspective by : Hin Chung Stephen Chan

Download or read book Polymorph Prediction of Organic (co-) Crystal Structures from a Thermodynamic Perspective written by Hin Chung Stephen Chan and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A molecule can crystallise in more than one crystal structure, a common phenomenon in organic compounds known as polymorphism. Different polymorphic forms may have significantly different physical properties, and a reliable prediction would be beneficial to the pharmaceutical industry. However, crystal structure prediction (CSP) based on the knowledge of the chemical structure had long been considered impossible. Previous failures of some CSP attempts led to speculation that the thermodynamic calculations in CSP methodologies failed to predict the kinetically favoured structures. Similarly, regarding the stabilities of co-crystals relative to their pure components, the results from lattice energy calculations and full CSP studies were inconclusive. In this thesis, these problems are addressed using the state-of-the-art CSP methodology implemented in the GRACE software. Firstly, it is shown that the low-energy predicted structures of four organic molecules, which have previously been considered difficult for CSP, correspond to their experimental structures. The possible outcomes of crystallisation can be reliably predicted by sufficiently accurate thermodynamic calculations. Then, the polymorphism of 5- chloroaspirin is investigated theoretically. The order of polymorph stability is predicted correctly and the isostructural relationships between a number of predicted structures and the experimental structures of other aspirin derivatives are established. Regarding the stabilities of co-crystals, 99 out of 102 co-crystals and salts of nicotinamide, isonicotinamide and picolinamide reported in the Cambridge Structural Database (CSD) are found to be more stable than their corresponding co-formers. Finally, full CSP studies of two co-crystal systems are conducted to explain why the co-crystals are not easily obtained experimentally.


Computational Materials Discovery

Computational Materials Discovery

Author: Artem Oganov

Publisher: Royal Society of Chemistry

Published: 2018-10-30

Total Pages: 456

ISBN-13: 1782629610

DOWNLOAD EBOOK

New technologies are made possible by new materials, and until recently new materials could only be discovered experimentally. Recent advances in solving the crystal structure prediction problem means that the computational design of materials is now a reality. Computational Materials Discovery provides a comprehensive review of this field covering different computational methodologies as well as specific applications of materials design. The book starts by illustrating how and why first-principle calculations have gained importance in the process of materials discovery. The book is then split into three sections, the first exploring different approaches and ideas including crystal structure prediction from evolutionary approaches, data mining methods and applications of machine learning. Section two then looks at examples of designing specific functional materials with special technological relevance for example photovoltaic materials, superconducting materials, topological insulators and thermoelectric materials. The final section considers recent developments in creating low-dimensional materials. With contributions from pioneers and leaders in the field, this unique and timely book provides a convenient entry point for graduate students, researchers and industrial scientists on both the methodologies and applications of the computational design of materials.


Book Synopsis Computational Materials Discovery by : Artem Oganov

Download or read book Computational Materials Discovery written by Artem Oganov and published by Royal Society of Chemistry. This book was released on 2018-10-30 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: New technologies are made possible by new materials, and until recently new materials could only be discovered experimentally. Recent advances in solving the crystal structure prediction problem means that the computational design of materials is now a reality. Computational Materials Discovery provides a comprehensive review of this field covering different computational methodologies as well as specific applications of materials design. The book starts by illustrating how and why first-principle calculations have gained importance in the process of materials discovery. The book is then split into three sections, the first exploring different approaches and ideas including crystal structure prediction from evolutionary approaches, data mining methods and applications of machine learning. Section two then looks at examples of designing specific functional materials with special technological relevance for example photovoltaic materials, superconducting materials, topological insulators and thermoelectric materials. The final section considers recent developments in creating low-dimensional materials. With contributions from pioneers and leaders in the field, this unique and timely book provides a convenient entry point for graduate students, researchers and industrial scientists on both the methodologies and applications of the computational design of materials.


First-Principles Prediction of Structures and Properties in Crystals

First-Principles Prediction of Structures and Properties in Crystals

Author: Dominik Kurzydlowski

Publisher:

Published: 2019

Total Pages: 1

ISBN-13: 9783039216710

DOWNLOAD EBOOK

The term "first-principles calculations" is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from 'first principles', i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate "first-principles" calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations-all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.


Book Synopsis First-Principles Prediction of Structures and Properties in Crystals by : Dominik Kurzydlowski

Download or read book First-Principles Prediction of Structures and Properties in Crystals written by Dominik Kurzydlowski and published by . This book was released on 2019 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term "first-principles calculations" is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from 'first principles', i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate "first-principles" calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations-all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.


The Crystalline States of Organic Compounds

The Crystalline States of Organic Compounds

Author: Angelo Gavezzotti

Publisher: Elsevier

Published: 2021-11-25

Total Pages: 304

ISBN-13: 0128237481

DOWNLOAD EBOOK

The Crystalline States of Organic Compounds is a broad survey of the techniques by which molecular crystals are investigated, modeled, and applied, starting with the fundamentals of intra- and intermolecular bonding supplemented by a concise tutorial on present-day diffraction methods, then proceeding to an examination of crystallographic databases with their statistics and of such fundamental and fast-growing topics as intermolecular potentials, polymorphism, co-crystallization, and crystal structure prediction by computer. A substantial part of the book is devoted to the techniques of choice in modern simulation, Monte Carlo and molecular dynamics, with their most recent developments and application to formed crystals and to the concomitant phases involved in nucleation and growth. Drawing on the decades-long experience of its author in teaching and research in the field of organic solid state, The Crystalline States of Organic Compounds is an indispensable source of key insights and future directions for students and researchers at any level, in academia and in industry. Condenses theoretical information and practical methods in a single resource Provides a guide on the use of crystallographic databases, structure statistics, and molecular simulations Includes a large number of worked examples and tutorials, with extensive graphics and multimedia


Book Synopsis The Crystalline States of Organic Compounds by : Angelo Gavezzotti

Download or read book The Crystalline States of Organic Compounds written by Angelo Gavezzotti and published by Elsevier. This book was released on 2021-11-25 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Crystalline States of Organic Compounds is a broad survey of the techniques by which molecular crystals are investigated, modeled, and applied, starting with the fundamentals of intra- and intermolecular bonding supplemented by a concise tutorial on present-day diffraction methods, then proceeding to an examination of crystallographic databases with their statistics and of such fundamental and fast-growing topics as intermolecular potentials, polymorphism, co-crystallization, and crystal structure prediction by computer. A substantial part of the book is devoted to the techniques of choice in modern simulation, Monte Carlo and molecular dynamics, with their most recent developments and application to formed crystals and to the concomitant phases involved in nucleation and growth. Drawing on the decades-long experience of its author in teaching and research in the field of organic solid state, The Crystalline States of Organic Compounds is an indispensable source of key insights and future directions for students and researchers at any level, in academia and in industry. Condenses theoretical information and practical methods in a single resource Provides a guide on the use of crystallographic databases, structure statistics, and molecular simulations Includes a large number of worked examples and tutorials, with extensive graphics and multimedia


Understanding Intermolecular Interactions in the Solid State

Understanding Intermolecular Interactions in the Solid State

Author: Deepak Chopra

Publisher: Royal Society of Chemistry

Published: 2018-09-04

Total Pages: 340

ISBN-13: 1788010795

DOWNLOAD EBOOK

Technological and computational advances in the past decade have meant a vast increase in the study of crystalline matter in both organic, inorganic and organometallic molecules. These studies revealed information about the conformation of molecules and their coordination geometry as well as the role of intermolecular interactions in molecular packing especially in the presence of different intermolecular interactions in solids. This resulting knowledge plays a significant role in the design of improved medicinal, mechanical, and electronic properties of single and multi-component solids in their crystalline state. Understanding Intermolecular Interactions in the Solid State explores the different techniques used to investigate the interactions, including hydrogen and halogen bonds, lone pair-pi, and pi-pi interactions, and their role in crystal formation. From experimental to computational approaches, the book covers the latest techniques in crystallography, ranging from high pressure and in situ crystallization to crystal structure prediction and charge density analysis. Thus this book provides a strong introductory platform to those new to this field and an overview for those already working in the area. A useful resource for higher level undergraduates, postgraduates and researchers across crystal engineering, crystallography, physical chemistry, solid-state chemistry, supramolecular chemistry and materials science.


Book Synopsis Understanding Intermolecular Interactions in the Solid State by : Deepak Chopra

Download or read book Understanding Intermolecular Interactions in the Solid State written by Deepak Chopra and published by Royal Society of Chemistry. This book was released on 2018-09-04 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological and computational advances in the past decade have meant a vast increase in the study of crystalline matter in both organic, inorganic and organometallic molecules. These studies revealed information about the conformation of molecules and their coordination geometry as well as the role of intermolecular interactions in molecular packing especially in the presence of different intermolecular interactions in solids. This resulting knowledge plays a significant role in the design of improved medicinal, mechanical, and electronic properties of single and multi-component solids in their crystalline state. Understanding Intermolecular Interactions in the Solid State explores the different techniques used to investigate the interactions, including hydrogen and halogen bonds, lone pair-pi, and pi-pi interactions, and their role in crystal formation. From experimental to computational approaches, the book covers the latest techniques in crystallography, ranging from high pressure and in situ crystallization to crystal structure prediction and charge density analysis. Thus this book provides a strong introductory platform to those new to this field and an overview for those already working in the area. A useful resource for higher level undergraduates, postgraduates and researchers across crystal engineering, crystallography, physical chemistry, solid-state chemistry, supramolecular chemistry and materials science.