Principles of Advanced Mathematical Physics

Principles of Advanced Mathematical Physics

Author: R.D. Richtmyer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 332

ISBN-13: 3642510760

DOWNLOAD EBOOK


Book Synopsis Principles of Advanced Mathematical Physics by : R.D. Richtmyer

Download or read book Principles of Advanced Mathematical Physics written by R.D. Richtmyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Principles of Advanced Mathematical Physics

Principles of Advanced Mathematical Physics

Author: Robert D. Richtmyer

Publisher: Springer

Published: 1978

Total Pages: 492

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Principles of Advanced Mathematical Physics by : Robert D. Richtmyer

Download or read book Principles of Advanced Mathematical Physics written by Robert D. Richtmyer and published by Springer. This book was released on 1978 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Principles of advanced mathematical physics

Principles of advanced mathematical physics

Author: Robert Davis Richtmyer

Publisher:

Published: 1978

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Principles of advanced mathematical physics by : Robert Davis Richtmyer

Download or read book Principles of advanced mathematical physics written by Robert Davis Richtmyer and published by . This book was released on 1978 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Principles of Advanced Mathematical Physics

Principles of Advanced Mathematical Physics

Author: Robert D. Richtmyer

Publisher:

Published: 1981

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Principles of Advanced Mathematical Physics by : Robert D. Richtmyer

Download or read book Principles of Advanced Mathematical Physics written by Robert D. Richtmyer and published by . This book was released on 1981 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Mathematical Physics II

Mathematical Physics II

Author: Enrico De Micheli

Publisher: MDPI

Published: 2020-12-15

Total Pages: 182

ISBN-13: 3039434950

DOWNLOAD EBOOK

The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this “unreasonable appropriateness of Mathematics in the Natural Sciences” emerged soon at the beginning of the scientific thought and was splendidly depicted by the words of Galileo: “The grand book, the Universe, is written in the language of Mathematics.” In this marriage, what Bertrand Russell called the supreme beauty, cold and austere, of Mathematics complements the supreme beauty, warm and engaging, of Physics. This book, which consists of nine articles, gives a flavor of these beauties and covers an ample range of mathematical subjects that play a relevant role in the study of physics and engineering. This range includes the study of free probability measures associated with p-adic number fields, non-commutative measures of quantum discord, non-linear Schrödinger equation analysis, spectral operators related to holomorphic extensions of series expansions, Gibbs phenomenon, deformed wave equation analysis, and optimization methods in the numerical study of material properties.


Book Synopsis Mathematical Physics II by : Enrico De Micheli

Download or read book Mathematical Physics II written by Enrico De Micheli and published by MDPI. This book was released on 2020-12-15 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this “unreasonable appropriateness of Mathematics in the Natural Sciences” emerged soon at the beginning of the scientific thought and was splendidly depicted by the words of Galileo: “The grand book, the Universe, is written in the language of Mathematics.” In this marriage, what Bertrand Russell called the supreme beauty, cold and austere, of Mathematics complements the supreme beauty, warm and engaging, of Physics. This book, which consists of nine articles, gives a flavor of these beauties and covers an ample range of mathematical subjects that play a relevant role in the study of physics and engineering. This range includes the study of free probability measures associated with p-adic number fields, non-commutative measures of quantum discord, non-linear Schrödinger equation analysis, spectral operators related to holomorphic extensions of series expansions, Gibbs phenomenon, deformed wave equation analysis, and optimization methods in the numerical study of material properties.


Mathematical Physics

Mathematical Physics

Author: Sadri Hassani

Publisher: Springer Science & Business Media

Published: 2002-02-08

Total Pages: 1052

ISBN-13: 9780387985794

DOWNLOAD EBOOK

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.


Book Synopsis Mathematical Physics by : Sadri Hassani

Download or read book Mathematical Physics written by Sadri Hassani and published by Springer Science & Business Media. This book was released on 2002-02-08 with total page 1052 pages. Available in PDF, EPUB and Kindle. Book excerpt: For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.


Principles of Advanced Mathematical Physics

Principles of Advanced Mathematical Physics

Author: Robert D. Richtmyer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 439

ISBN-13: 3642463789

DOWNLOAD EBOOK

A first consequence of this difference in texture concerns the attitude we must take toward some (or perhaps most) investigations in "applied mathe matics," at least when the mathematics is applied to physics. Namely, those investigations have to be regarded as pure mathematics and evaluated as such. For example, some of my mathematical colleagues have worked in recent years on the Hartree-Fock approximate method for determining the structures of many-electron atoms and ions. When the method was intro duced, nearly fifty years ago, physicists did the best they could to justify it, using variational principles, intuition, and other techniques within the texture of physical reasoning. By now the method has long since become part of the established structure of physics. The mathematical theorems that can be proved now (mostly for two- and three-electron systems, hence of limited interest for physics), have to be regarded as mathematics. If they are good mathematics (and I believe they are), that is justification enough. If they are not, there is no basis for saying that the work is being done to help the physicists. In that sense, applied mathematics plays no role in today's physics. In today's division of labor, the task of the mathematician is to create mathematics, in whatever area, without being much concerned about how the mathematics is used; that should be decided in the future and by physics.


Book Synopsis Principles of Advanced Mathematical Physics by : Robert D. Richtmyer

Download or read book Principles of Advanced Mathematical Physics written by Robert D. Richtmyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: A first consequence of this difference in texture concerns the attitude we must take toward some (or perhaps most) investigations in "applied mathe matics," at least when the mathematics is applied to physics. Namely, those investigations have to be regarded as pure mathematics and evaluated as such. For example, some of my mathematical colleagues have worked in recent years on the Hartree-Fock approximate method for determining the structures of many-electron atoms and ions. When the method was intro duced, nearly fifty years ago, physicists did the best they could to justify it, using variational principles, intuition, and other techniques within the texture of physical reasoning. By now the method has long since become part of the established structure of physics. The mathematical theorems that can be proved now (mostly for two- and three-electron systems, hence of limited interest for physics), have to be regarded as mathematics. If they are good mathematics (and I believe they are), that is justification enough. If they are not, there is no basis for saying that the work is being done to help the physicists. In that sense, applied mathematics plays no role in today's physics. In today's division of labor, the task of the mathematician is to create mathematics, in whatever area, without being much concerned about how the mathematics is used; that should be decided in the future and by physics.


Mathematical Physics

Mathematical Physics

Author: Donald Howard Menzel

Publisher: Courier Corporation

Published: 1961-01-01

Total Pages: 434

ISBN-13: 0486600564

DOWNLOAD EBOOK

This is a thorough treatment in one volume of the mathematical techniques vital in classical mechanics, electromagnetic theory, quantum theory, and relativity. Designed for junior, senior, and graduate courses in mathematical physics, it presents full explanations of function theory, vectors, matrices, dyadics, tensors, partial differential equations, and other advanced mathematical techniques in their logical order during the presentation of the various physical theories. The completeness of the derivations makes the book especially useful for self-study. Several topics seldom presented, such as electron theory and relativity, appear in considerable detail, because an understanding of them is increasingly vital to the student of atomic physics. But the author's treatment of his chosen subjects in classical physics is no way slighted, and his book has proved valuable to students in all fields of physics. The opening section provides scores of definitions, conversion factors, dimensional constants, and electromagnetic quantities for ready reference later on. There follows a full treatment of the main branches of classical physics: potential theory, spherical harmonics, vector analysis, dyadics, matrices, tensors, hydrodynamics, advanced dynamics, waves and vibrations, quantum mechanics, electromagnetic theory, and radiation theory. The book concludes with a discussion from first principles of the theory of relativity. Nearly 200 problems ranging over a wide level of difficulty and selected from many different fields of physics are included, with answers, at ends of chapters. "The treatment is more detailed than normal for an advanced text . . . excellent set of sections on Dyadics, Matrices, and Tensors. . . . The part on waves and vibrations is well done . . . problems well varied in difficulty." ― Journal of the Franklin Institute.


Book Synopsis Mathematical Physics by : Donald Howard Menzel

Download or read book Mathematical Physics written by Donald Howard Menzel and published by Courier Corporation. This book was released on 1961-01-01 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a thorough treatment in one volume of the mathematical techniques vital in classical mechanics, electromagnetic theory, quantum theory, and relativity. Designed for junior, senior, and graduate courses in mathematical physics, it presents full explanations of function theory, vectors, matrices, dyadics, tensors, partial differential equations, and other advanced mathematical techniques in their logical order during the presentation of the various physical theories. The completeness of the derivations makes the book especially useful for self-study. Several topics seldom presented, such as electron theory and relativity, appear in considerable detail, because an understanding of them is increasingly vital to the student of atomic physics. But the author's treatment of his chosen subjects in classical physics is no way slighted, and his book has proved valuable to students in all fields of physics. The opening section provides scores of definitions, conversion factors, dimensional constants, and electromagnetic quantities for ready reference later on. There follows a full treatment of the main branches of classical physics: potential theory, spherical harmonics, vector analysis, dyadics, matrices, tensors, hydrodynamics, advanced dynamics, waves and vibrations, quantum mechanics, electromagnetic theory, and radiation theory. The book concludes with a discussion from first principles of the theory of relativity. Nearly 200 problems ranging over a wide level of difficulty and selected from many different fields of physics are included, with answers, at ends of chapters. "The treatment is more detailed than normal for an advanced text . . . excellent set of sections on Dyadics, Matrices, and Tensors. . . . The part on waves and vibrations is well done . . . problems well varied in difficulty." ― Journal of the Franklin Institute.


Lectures on Advanced Mathematical Methods for Physicists

Lectures on Advanced Mathematical Methods for Physicists

Author: Sunil Mukhi

Publisher: World Scientific

Published: 2010

Total Pages: 289

ISBN-13: 981429974X

DOWNLOAD EBOOK

This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics, (including string theory) while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics. Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and De Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles. Part II starts with a review of group theory, followed by the basics of representation theory. A thorough description of Lie groups and algebras is presented with their structure constants and linear representations. Root systems and their classifications are detailed, and this section of the book concludes with the description of representations of simple Lie algebras, emphasizing spinor representations of orthogonal and pseudo-orthogonal groups. The style of presentation is succinct and precise. Involved mathematical proofs that are not of primary importance to physics student are omitted. The book aims to provide the reader access to a wide variety of sources in the current literature, in addition to being a textbook of advanced mathematical methods for physicists.


Book Synopsis Lectures on Advanced Mathematical Methods for Physicists by : Sunil Mukhi

Download or read book Lectures on Advanced Mathematical Methods for Physicists written by Sunil Mukhi and published by World Scientific. This book was released on 2010 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics, (including string theory) while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics. Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and De Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles. Part II starts with a review of group theory, followed by the basics of representation theory. A thorough description of Lie groups and algebras is presented with their structure constants and linear representations. Root systems and their classifications are detailed, and this section of the book concludes with the description of representations of simple Lie algebras, emphasizing spinor representations of orthogonal and pseudo-orthogonal groups. The style of presentation is succinct and precise. Involved mathematical proofs that are not of primary importance to physics student are omitted. The book aims to provide the reader access to a wide variety of sources in the current literature, in addition to being a textbook of advanced mathematical methods for physicists.


Computational Physics: Ii Granada Lectures

Computational Physics: Ii Granada Lectures

Author: P L Garrido

Publisher: World Scientific

Published: 1993-04-20

Total Pages: 390

ISBN-13: 9814554022

DOWNLOAD EBOOK

This book contains the invited lectures and a short account of communications at the II Granada Lectures which focused on Dynamical Systems. Key concepts such as dissipative dynamical systems, orbits, bifurcations, classical Hamiltonian chaos, KAM theorem, hyperbolic sets, time series analysis, renormalization group, quantum chaos and their applications were covered during the seminar. In addition, popular topics in computational statistical physics such as models of growth, material physics, fluids, nonequilibrium phase transitions, critical phenomena and computational astrophysics were also discussed. Written pedagogically at the graduate level, the topics were described comprehensively and supported by illustrations. This book is useful for beginners and a valuable reference for professionals in this field.


Book Synopsis Computational Physics: Ii Granada Lectures by : P L Garrido

Download or read book Computational Physics: Ii Granada Lectures written by P L Garrido and published by World Scientific. This book was released on 1993-04-20 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the invited lectures and a short account of communications at the II Granada Lectures which focused on Dynamical Systems. Key concepts such as dissipative dynamical systems, orbits, bifurcations, classical Hamiltonian chaos, KAM theorem, hyperbolic sets, time series analysis, renormalization group, quantum chaos and their applications were covered during the seminar. In addition, popular topics in computational statistical physics such as models of growth, material physics, fluids, nonequilibrium phase transitions, critical phenomena and computational astrophysics were also discussed. Written pedagogically at the graduate level, the topics were described comprehensively and supported by illustrations. This book is useful for beginners and a valuable reference for professionals in this field.