Principles of Astrophysical Fluid Dynamics

Principles of Astrophysical Fluid Dynamics

Author: Cathie Clarke

Publisher: Cambridge University Press

Published: 2007-03-08

Total Pages: 239

ISBN-13: 0521853311

DOWNLOAD EBOOK

An advanced textbook on AFD introducing astrophysics students to the necessary fluid dynamics, first published in 2007.


Book Synopsis Principles of Astrophysical Fluid Dynamics by : Cathie Clarke

Download or read book Principles of Astrophysical Fluid Dynamics written by Cathie Clarke and published by Cambridge University Press. This book was released on 2007-03-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced textbook on AFD introducing astrophysics students to the necessary fluid dynamics, first published in 2007.


Principles of Astrophysical Fluid Dynamics

Principles of Astrophysical Fluid Dynamics

Author: Cathie Clarke

Publisher: Cambridge University Press

Published: 2007-03-08

Total Pages: 237

ISBN-13: 1139462237

DOWNLOAD EBOOK

Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook, first published in 2007, introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. The textbook has been developed for use by final-year undergraduate and starting graduate students of astrophysics, and contains over fifty exercises. It is based on the authors' many years of teaching their astrophysical fluid dynamics course at the University of Cambridge.


Book Synopsis Principles of Astrophysical Fluid Dynamics by : Cathie Clarke

Download or read book Principles of Astrophysical Fluid Dynamics written by Cathie Clarke and published by Cambridge University Press. This book was released on 2007-03-08 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook, first published in 2007, introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. The textbook has been developed for use by final-year undergraduate and starting graduate students of astrophysics, and contains over fifty exercises. It is based on the authors' many years of teaching their astrophysical fluid dynamics course at the University of Cambridge.


Principles of Astrophysical Fluid Dynamics

Principles of Astrophysical Fluid Dynamics

Author: Cathie Clarke

Publisher: Cambridge University Press

Published: 2014-01-30

Total Pages: 0

ISBN-13: 9781107666917

DOWNLOAD EBOOK

Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook, first published in 2007, introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. The textbook has been developed for use by final-year undergraduate and starting graduate students of astrophysics, and contains over fifty exercises. It is based on the authors' many years of teaching their astrophysical fluid dynamics course at the University of Cambridge.


Book Synopsis Principles of Astrophysical Fluid Dynamics by : Cathie Clarke

Download or read book Principles of Astrophysical Fluid Dynamics written by Cathie Clarke and published by Cambridge University Press. This book was released on 2014-01-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid dynamical forces drive most of the fundamental processes in the Universe and so play a crucial role in our understanding of astrophysics. This comprehensive textbook, first published in 2007, introduces the necessary fluid dynamics to understand a wide range of astronomical phenomena, from stellar structures to supernovae blast waves, to accretion discs. The authors' approach is to introduce and derive the fundamental equations, supplemented by text that conveys a more intuitive understanding of the subject, and to emphasise the observable phenomena that rely on fluid dynamical processes. The textbook has been developed for use by final-year undergraduate and starting graduate students of astrophysics, and contains over fifty exercises. It is based on the authors' many years of teaching their astrophysical fluid dynamics course at the University of Cambridge.


Astrophysical Fluid Dynamics

Astrophysical Fluid Dynamics

Author: E. Battaner

Publisher: Cambridge University Press

Published: 1996-02-23

Total Pages: 260

ISBN-13: 9780521437479

DOWNLOAD EBOOK

This first course in fluid dynamics covers the basics and introduces a wealth of astronomical applications.


Book Synopsis Astrophysical Fluid Dynamics by : E. Battaner

Download or read book Astrophysical Fluid Dynamics written by E. Battaner and published by Cambridge University Press. This book was released on 1996-02-23 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first course in fluid dynamics covers the basics and introduces a wealth of astronomical applications.


The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas

Author: Arnab Rai Choudhuri

Publisher: Cambridge University Press

Published: 1998-11-26

Total Pages: 452

ISBN-13: 9780521555432

DOWNLOAD EBOOK

A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.


Book Synopsis The Physics of Fluids and Plasmas by : Arnab Rai Choudhuri

Download or read book The Physics of Fluids and Plasmas written by Arnab Rai Choudhuri and published by Cambridge University Press. This book was released on 1998-11-26 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.


An Introduction to Astrophysical Fluid Dynamics

An Introduction to Astrophysical Fluid Dynamics

Author: Michael J. Thompson

Publisher: Imperial College Press

Published: 2006

Total Pages: 242

ISBN-13: 1860946151

DOWNLOAD EBOOK

This book provides an introduction for graduate students and advanced undergraduate students to the field of astrophysical fluid dynamics. Although sometimes ignored, fluid dynamical processes play a central role in virtually all areas of astrophysics.No previous knowledge of fluid dynamics is assumed. After establishing the basic equations of fluid dynamics and the physics relevant to an astrophysical application, a variety of topics in the field are addressed. There is also a chapter introducing the reader to numerical methods. Appendices list useful physical constants and astronomical quantities, and provide handy reference material on Cartesian tensors, vector calculus in polar coordinates, self-adjoint eigenvalue problems and JWKB theory.


Book Synopsis An Introduction to Astrophysical Fluid Dynamics by : Michael J. Thompson

Download or read book An Introduction to Astrophysical Fluid Dynamics written by Michael J. Thompson and published by Imperial College Press. This book was released on 2006 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction for graduate students and advanced undergraduate students to the field of astrophysical fluid dynamics. Although sometimes ignored, fluid dynamical processes play a central role in virtually all areas of astrophysics.No previous knowledge of fluid dynamics is assumed. After establishing the basic equations of fluid dynamics and the physics relevant to an astrophysical application, a variety of topics in the field are addressed. There is also a chapter introducing the reader to numerical methods. Appendices list useful physical constants and astronomical quantities, and provide handy reference material on Cartesian tensors, vector calculus in polar coordinates, self-adjoint eigenvalue problems and JWKB theory.


Astrophysical Flows

Astrophysical Flows

Author: James E. Pringle

Publisher: Cambridge University Press

Published: 2007-04-26

Total Pages: 217

ISBN-13: 1139464442

DOWNLOAD EBOOK

Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This graduate textbook, first published in 2007, provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.


Book Synopsis Astrophysical Flows by : James E. Pringle

Download or read book Astrophysical Flows written by James E. Pringle and published by Cambridge University Press. This book was released on 2007-04-26 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This graduate textbook, first published in 2007, provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.


An Introduction To Astrophysical Fluid Dynamics

An Introduction To Astrophysical Fluid Dynamics

Author: Michael John Thompson

Publisher: World Scientific

Published: 2006-01-17

Total Pages: 240

ISBN-13: 1911298380

DOWNLOAD EBOOK

This book provides an introduction for graduate students and advanced undergraduate students to the field of astrophysical fluid dynamics. Although sometimes ignored, fluid dynamical processes play a central role in virtually all areas of astrophysics.No previous knowledge of fluid dynamics is assumed. After establishing the basic equations of fluid dynamics and the physics relevant to an astrophysical application, a variety of topics in the field are addressed. There is also a chapter introducing the reader to numerical methods. Appendices list useful physical constants and astronomical quantities, and provide handy reference material on Cartesian tensors, vector calculus in polar coordinates, self-adjoint eigenvalue problems and JWKB theory./a


Book Synopsis An Introduction To Astrophysical Fluid Dynamics by : Michael John Thompson

Download or read book An Introduction To Astrophysical Fluid Dynamics written by Michael John Thompson and published by World Scientific. This book was released on 2006-01-17 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction for graduate students and advanced undergraduate students to the field of astrophysical fluid dynamics. Although sometimes ignored, fluid dynamical processes play a central role in virtually all areas of astrophysics.No previous knowledge of fluid dynamics is assumed. After establishing the basic equations of fluid dynamics and the physics relevant to an astrophysical application, a variety of topics in the field are addressed. There is also a chapter introducing the reader to numerical methods. Appendices list useful physical constants and astronomical quantities, and provide handy reference material on Cartesian tensors, vector calculus in polar coordinates, self-adjoint eigenvalue problems and JWKB theory./a


Modern Fluid Dynamics for Physics and Astrophysics

Modern Fluid Dynamics for Physics and Astrophysics

Author: Oded Regev

Publisher: Springer

Published: 2016-05-11

Total Pages: 680

ISBN-13: 1493931644

DOWNLOAD EBOOK

This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It is assumed that the readers are mathematically equipped with a reasonable knowledge in analysis, including basics of ordinary and partial differential equations and a good command of vector calculus and linear algebra. Each chapter concludes with bibliographical notes in which the authors briefly discuss the chapter's essential literature and give recommendations for further, deeper reading. Included in each chapter are a number of problems, some of them relevant to astrophysics and planetary science. The book is written for advanced undergraduate and graduate students, but will also prove a valuable source of reference for established researchers.


Book Synopsis Modern Fluid Dynamics for Physics and Astrophysics by : Oded Regev

Download or read book Modern Fluid Dynamics for Physics and Astrophysics written by Oded Regev and published by Springer. This book was released on 2016-05-11 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It is assumed that the readers are mathematically equipped with a reasonable knowledge in analysis, including basics of ordinary and partial differential equations and a good command of vector calculus and linear algebra. Each chapter concludes with bibliographical notes in which the authors briefly discuss the chapter's essential literature and give recommendations for further, deeper reading. Included in each chapter are a number of problems, some of them relevant to astrophysics and planetary science. The book is written for advanced undergraduate and graduate students, but will also prove a valuable source of reference for established researchers.


Essential Fluid Dynamics for Scientists

Essential Fluid Dynamics for Scientists

Author: Jonathan Braithwaite

Publisher: Morgan & Claypool Publishers

Published: 2018-01-09

Total Pages: 165

ISBN-13: 1681745984

DOWNLOAD EBOOK

The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.


Book Synopsis Essential Fluid Dynamics for Scientists by : Jonathan Braithwaite

Download or read book Essential Fluid Dynamics for Scientists written by Jonathan Braithwaite and published by Morgan & Claypool Publishers. This book was released on 2018-01-09 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.