Principles Of Classical Thermodynamics: Applied To Materials Science

Principles Of Classical Thermodynamics: Applied To Materials Science

Author: Didier De Fontaine

Publisher: World Scientific

Published: 2019-06-04

Total Pages: 390

ISBN-13: 9813222700

DOWNLOAD EBOOK

The aim of this book is to present Classical Thermodynamics in a unified way, from the most fundamental principles to non-uniform systems, thereby requiring the introduction of coarse graining methods, leading for instance to phase field methods. Solutions thermodynamics and temperature-concentration phase diagrams are covered, plus also a brief introduction to statistical thermodynamics and topological disorder. The Landau theory is included along with a general treatment of multicomponent instabilities in various types of thermodynamic applications, including phase separation and order-disorder transitions. Nucleation theory and spinodal decomposition are presented as extreme cases of a single approach involving the all-important role of fluctuations.In this way, it is hoped that this coverage will reconcile in a unified manner techniques generally presented separately in physics and materials texts.


Book Synopsis Principles Of Classical Thermodynamics: Applied To Materials Science by : Didier De Fontaine

Download or read book Principles Of Classical Thermodynamics: Applied To Materials Science written by Didier De Fontaine and published by World Scientific. This book was released on 2019-06-04 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present Classical Thermodynamics in a unified way, from the most fundamental principles to non-uniform systems, thereby requiring the introduction of coarse graining methods, leading for instance to phase field methods. Solutions thermodynamics and temperature-concentration phase diagrams are covered, plus also a brief introduction to statistical thermodynamics and topological disorder. The Landau theory is included along with a general treatment of multicomponent instabilities in various types of thermodynamic applications, including phase separation and order-disorder transitions. Nucleation theory and spinodal decomposition are presented as extreme cases of a single approach involving the all-important role of fluctuations.In this way, it is hoped that this coverage will reconcile in a unified manner techniques generally presented separately in physics and materials texts.


Classical Thermodynamics of Fluid Systems

Classical Thermodynamics of Fluid Systems

Author: Juan H. Vera

Publisher: CRC Press

Published: 2016-11-25

Total Pages: 466

ISBN-13: 1315399040

DOWNLOAD EBOOK

This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.


Book Synopsis Classical Thermodynamics of Fluid Systems by : Juan H. Vera

Download or read book Classical Thermodynamics of Fluid Systems written by Juan H. Vera and published by CRC Press. This book was released on 2016-11-25 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.


Molecular Dynamics Simulations in Statistical Physics: Theory and Applications

Molecular Dynamics Simulations in Statistical Physics: Theory and Applications

Author: Hiqmet Kamberaj

Publisher: Springer Nature

Published: 2020-03-20

Total Pages: 463

ISBN-13: 3030357023

DOWNLOAD EBOOK

This book presents computer simulations using molecular dynamics techniques in statistical physics, with a focus on macromolecular systems. The numerical methods are introduced in the form of computer algorithms and can be implemented in computers using any desired computer programming language, such as Fortran 90, C/C++, and others. The book also explains how some of these numerical methods and their algorithms can be implemented in the existing computer programming software of macromolecular systems, such as the CHARMM program. In addition, it examines a number of advanced concepts of computer simulation techniques used in statistical physics as well as biological and physical systems. Discussing the molecular dynamics approach in detail to enhance readers understanding of the use of this method in statistical physics problems, it also describes the equations of motion in various statistical ensembles to mimic real-world experimental conditions. Intended for graduate students and research scientists working in the field of theoretical and computational biophysics, physics and chemistry, the book can also be used by postgraduate students of other disciplines, such as applied mathematics, computer sciences, and bioinformatics. Further, offering insights into fundamental theory, it as a valuable resource for expert practitioners and programmers and those new to the field.


Book Synopsis Molecular Dynamics Simulations in Statistical Physics: Theory and Applications by : Hiqmet Kamberaj

Download or read book Molecular Dynamics Simulations in Statistical Physics: Theory and Applications written by Hiqmet Kamberaj and published by Springer Nature. This book was released on 2020-03-20 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer simulations using molecular dynamics techniques in statistical physics, with a focus on macromolecular systems. The numerical methods are introduced in the form of computer algorithms and can be implemented in computers using any desired computer programming language, such as Fortran 90, C/C++, and others. The book also explains how some of these numerical methods and their algorithms can be implemented in the existing computer programming software of macromolecular systems, such as the CHARMM program. In addition, it examines a number of advanced concepts of computer simulation techniques used in statistical physics as well as biological and physical systems. Discussing the molecular dynamics approach in detail to enhance readers understanding of the use of this method in statistical physics problems, it also describes the equations of motion in various statistical ensembles to mimic real-world experimental conditions. Intended for graduate students and research scientists working in the field of theoretical and computational biophysics, physics and chemistry, the book can also be used by postgraduate students of other disciplines, such as applied mathematics, computer sciences, and bioinformatics. Further, offering insights into fundamental theory, it as a valuable resource for expert practitioners and programmers and those new to the field.


Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics

Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics

Author: Daniel Blankschtein

Publisher: Springer Nature

Published: 2021-03-15

Total Pages: 758

ISBN-13: 3030491986

DOWNLOAD EBOOK

This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.


Book Synopsis Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics by : Daniel Blankschtein

Download or read book Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics written by Daniel Blankschtein and published by Springer Nature. This book was released on 2021-03-15 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.


Classical Thermodynamics of Fluid Systems

Classical Thermodynamics of Fluid Systems

Author: Juan H. Vera

Publisher: CRC Press

Published: 2016-11-25

Total Pages: 438

ISBN-13: 1315399059

DOWNLOAD EBOOK

This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.


Book Synopsis Classical Thermodynamics of Fluid Systems by : Juan H. Vera

Download or read book Classical Thermodynamics of Fluid Systems written by Juan H. Vera and published by CRC Press. This book was released on 2016-11-25 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.


The Entropy Principle

The Entropy Principle

Author: André Thess

Publisher: Springer Science & Business Media

Published: 2011-01-04

Total Pages: 186

ISBN-13: 3642133495

DOWNLOAD EBOOK

Entropy – the key concept of thermodynamics, clearly explained and carefully illustrated. This book presents an accurate definition of entropy in classical thermodynamics which does not “put the cart before the horse” and is suitable for basic and advanced university courses in thermodynamics. Entropy is the most important and at the same time the most difficult term of thermodynamics to understand. Many students are discontent with its classical definition since it is either based on “temperature” and “heat” which both cannot be accurately defined without entropy, or since it includes concepts such as “molecular disorder” which does not fit in a macroscopic theory. The physicists Elliott Lieb and Jakob Yngvason have recently developed a new formulation of thermodynamics which is free of these problems. The Lieb-Yngvason formulation of classical thermodynamics is based on the concept of adiabatic accessibility and culminates in the entropy principle. The entropy principle represents the accurate mathematical formulation of the second law of thermodynamics. Temperature becomes a derived quantity whereas ”heat” is no longer needed. This book makes the Lieb-Yngvason theory accessible to students. The presentation is supplemented by seven illustrative examples which explain the application of entropy and the entropy principle in practical problems in science and engineering.


Book Synopsis The Entropy Principle by : André Thess

Download or read book The Entropy Principle written by André Thess and published by Springer Science & Business Media. This book was released on 2011-01-04 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Entropy – the key concept of thermodynamics, clearly explained and carefully illustrated. This book presents an accurate definition of entropy in classical thermodynamics which does not “put the cart before the horse” and is suitable for basic and advanced university courses in thermodynamics. Entropy is the most important and at the same time the most difficult term of thermodynamics to understand. Many students are discontent with its classical definition since it is either based on “temperature” and “heat” which both cannot be accurately defined without entropy, or since it includes concepts such as “molecular disorder” which does not fit in a macroscopic theory. The physicists Elliott Lieb and Jakob Yngvason have recently developed a new formulation of thermodynamics which is free of these problems. The Lieb-Yngvason formulation of classical thermodynamics is based on the concept of adiabatic accessibility and culminates in the entropy principle. The entropy principle represents the accurate mathematical formulation of the second law of thermodynamics. Temperature becomes a derived quantity whereas ”heat” is no longer needed. This book makes the Lieb-Yngvason theory accessible to students. The presentation is supplemented by seven illustrative examples which explain the application of entropy and the entropy principle in practical problems in science and engineering.


Principles of Thermodynamics

Principles of Thermodynamics

Author: Jean-Philippe Ansermet

Publisher: Cambridge University Press

Published: 2019-01-03

Total Pages: 547

ISBN-13: 1108426093

DOWNLOAD EBOOK

An introductory textbook presenting the key concepts and applications of thermodynamics, including numerous worked examples and exercises.


Book Synopsis Principles of Thermodynamics by : Jean-Philippe Ansermet

Download or read book Principles of Thermodynamics written by Jean-Philippe Ansermet and published by Cambridge University Press. This book was released on 2019-01-03 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook presenting the key concepts and applications of thermodynamics, including numerous worked examples and exercises.


Chemical Thermodynamics: Advanced Applications

Chemical Thermodynamics: Advanced Applications

Author: J. Bevan Ott

Publisher: Elsevier

Published: 2000-06-16

Total Pages: 465

ISBN-13: 0080500994

DOWNLOAD EBOOK

This book is an excellent companion to Chemical Thermodynamics: Principles and Applications. Together they make a complete reference set for the practicing scientist. This volume extends the range of topics and applications to ones that are not usually covered in a beginning thermodynamics text. In a sense, the book covers a "middle ground" between the basic principles developed in a beginning thermodynamics textbook, and the very specialized applications that are a part of an ongoing research project. As such, it could prove invaluable to the practicing scientist who needs to apply thermodynamic relationships to aid in the understanding of the chemical process under consideration. The writing style in this volume remains informal, but more technical than in Principles and Applications. It starts with Chapter 11, which summarizes the thermodynamic relationships developed in this earlier volume. For those who want or need more detail, references are given to the sections in Principles and Applications where one could go to learn more about the development, limitations, and conditions where these equations apply. This is the only place where Advanced Applications ties back to the previous volume. Chapter 11 can serve as a review of the fundamental thermodynamic equations that are necessary for the more sophisticated applications described in the remainder of this book. This may be all that is necessary for the practicing scientist who has been away from the field for some time and needs some review. The remainder of this book applies thermodynamics to the description of a variety of problems. The topics covered are those that are probably of the most fundamental and broadest interest. Throughout the book, examples of "real" systems are used as much as possible. This is in contrast to many books where "generic" examples are used almost exclusively. A complete set of references to all sources of data and to supplementary reading sources is included. Problems are given at the end of each chapter. This makes the book ideally suited for use as a textbook in an advanced topics course in chemical thermodynamics. An excellent review of thermodynamic principles and mathematical relationships along with references to the relevant sections in Principles and Applications where these equations are developed Applications of thermodynamics in a wide variety of chemical processes, including phase equilibria, chemical equilibrium, properties of mixtures, and surface chemistry Case-study approach to demonstrate the application of thermodynamics to biochemical, geochemical, and industrial processes Applications at the "cutting edge" of thermodynamics Examples and problems to assist in learning Includes a complete set of references to all literature sources


Book Synopsis Chemical Thermodynamics: Advanced Applications by : J. Bevan Ott

Download or read book Chemical Thermodynamics: Advanced Applications written by J. Bevan Ott and published by Elsevier. This book was released on 2000-06-16 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an excellent companion to Chemical Thermodynamics: Principles and Applications. Together they make a complete reference set for the practicing scientist. This volume extends the range of topics and applications to ones that are not usually covered in a beginning thermodynamics text. In a sense, the book covers a "middle ground" between the basic principles developed in a beginning thermodynamics textbook, and the very specialized applications that are a part of an ongoing research project. As such, it could prove invaluable to the practicing scientist who needs to apply thermodynamic relationships to aid in the understanding of the chemical process under consideration. The writing style in this volume remains informal, but more technical than in Principles and Applications. It starts with Chapter 11, which summarizes the thermodynamic relationships developed in this earlier volume. For those who want or need more detail, references are given to the sections in Principles and Applications where one could go to learn more about the development, limitations, and conditions where these equations apply. This is the only place where Advanced Applications ties back to the previous volume. Chapter 11 can serve as a review of the fundamental thermodynamic equations that are necessary for the more sophisticated applications described in the remainder of this book. This may be all that is necessary for the practicing scientist who has been away from the field for some time and needs some review. The remainder of this book applies thermodynamics to the description of a variety of problems. The topics covered are those that are probably of the most fundamental and broadest interest. Throughout the book, examples of "real" systems are used as much as possible. This is in contrast to many books where "generic" examples are used almost exclusively. A complete set of references to all sources of data and to supplementary reading sources is included. Problems are given at the end of each chapter. This makes the book ideally suited for use as a textbook in an advanced topics course in chemical thermodynamics. An excellent review of thermodynamic principles and mathematical relationships along with references to the relevant sections in Principles and Applications where these equations are developed Applications of thermodynamics in a wide variety of chemical processes, including phase equilibria, chemical equilibrium, properties of mixtures, and surface chemistry Case-study approach to demonstrate the application of thermodynamics to biochemical, geochemical, and industrial processes Applications at the "cutting edge" of thermodynamics Examples and problems to assist in learning Includes a complete set of references to all literature sources


Classical and Geometrical Theory of Chemical and Phase Thermodynamics

Classical and Geometrical Theory of Chemical and Phase Thermodynamics

Author: Frank Weinhold

Publisher: John Wiley & Sons

Published: 2009-02-17

Total Pages: 506

ISBN-13: 0470435054

DOWNLOAD EBOOK

Because it is grounded in math, chemical thermodynamics is often perceived as a difficult subject and many students are never fully comfortable with it. The first authoritative textbook presentation of equilibrium chemical and phase thermodynamics in a reformulated geometrical framework, Chemical and Phase Thermodynamics shows how this famously difficult subject can be accurately expressed with only elementary high-school geometry concepts. Featuring numerous suggestions for research-level extensions, this simplified alternative to standard calculus-based thermodynamics expositions is perfect for undergraduate and beginning graduate students as well as researchers.


Book Synopsis Classical and Geometrical Theory of Chemical and Phase Thermodynamics by : Frank Weinhold

Download or read book Classical and Geometrical Theory of Chemical and Phase Thermodynamics written by Frank Weinhold and published by John Wiley & Sons. This book was released on 2009-02-17 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because it is grounded in math, chemical thermodynamics is often perceived as a difficult subject and many students are never fully comfortable with it. The first authoritative textbook presentation of equilibrium chemical and phase thermodynamics in a reformulated geometrical framework, Chemical and Phase Thermodynamics shows how this famously difficult subject can be accurately expressed with only elementary high-school geometry concepts. Featuring numerous suggestions for research-level extensions, this simplified alternative to standard calculus-based thermodynamics expositions is perfect for undergraduate and beginning graduate students as well as researchers.


Thermodynamics

Thermodynamics

Author: Jurgen M. Honig

Publisher: Academic Press

Published: 2007-05-10

Total Pages: 469

ISBN-13: 0080525342

DOWNLOAD EBOOK

Thermodynamics is a self-contained analysis of physical and chemical processes, based on classical thermodynamic principles. Emphasis is placed on the fundamental principles, with a conbination of theory and practice, and demonstrating their application to a variety of disciplines. Included in this work are new approaches to irreversible processes, electromagnetic effects, adsorption phenomena, self-assembly, the origin of phase diagrams, critical phenomena, and Carathéodory's treatment of the second law. This book will appeal to graduate students and professional chemists and physicists who wish to acquire a more sophisticated overview of thermodynamics and related subject matter. Easy-to-understand style appeals to both chemists and physicists Discusses treatment of electromagnetic phenomena and adsorption of surface gases surfaces Extensively revised to cater for advanced courses in thermodynamics


Book Synopsis Thermodynamics by : Jurgen M. Honig

Download or read book Thermodynamics written by Jurgen M. Honig and published by Academic Press. This book was released on 2007-05-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermodynamics is a self-contained analysis of physical and chemical processes, based on classical thermodynamic principles. Emphasis is placed on the fundamental principles, with a conbination of theory and practice, and demonstrating their application to a variety of disciplines. Included in this work are new approaches to irreversible processes, electromagnetic effects, adsorption phenomena, self-assembly, the origin of phase diagrams, critical phenomena, and Carathéodory's treatment of the second law. This book will appeal to graduate students and professional chemists and physicists who wish to acquire a more sophisticated overview of thermodynamics and related subject matter. Easy-to-understand style appeals to both chemists and physicists Discusses treatment of electromagnetic phenomena and adsorption of surface gases surfaces Extensively revised to cater for advanced courses in thermodynamics