Properties of QCD Matter at High Baryon Density

Properties of QCD Matter at High Baryon Density

Author: Xiaofeng Luo

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 294

ISBN-13: 9811944415

DOWNLOAD EBOOK

This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 ~ 11 GeV), FAIR at GSI (2 ~ 4.9 GeV SIS100), HIAF at IMP (2 ~ 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.


Book Synopsis Properties of QCD Matter at High Baryon Density by : Xiaofeng Luo

Download or read book Properties of QCD Matter at High Baryon Density written by Xiaofeng Luo and published by Springer Nature. This book was released on 2023-01-01 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 ~ 11 GeV), FAIR at GSI (2 ~ 4.9 GeV SIS100), HIAF at IMP (2 ~ 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.


Structure and Dynamical Nature of Hot and Dense QCD Matter

Structure and Dynamical Nature of Hot and Dense QCD Matter

Author:

Publisher:

Published: 1991

Total Pages: 20

ISBN-13:

DOWNLOAD EBOOK

Static and dynamical properties of QCD at finite temperature and density are reviewed. Non-perturbative aspects of the QCD plasma and the modification of the hadron properties associated with the chiral transition are discussed on the basis of lattice data, effective theories and QCD sum rules. Special emphasis is laid on the importance of the finite baryon density to see the effects of the restoration of chiral symmetry in experiment.


Book Synopsis Structure and Dynamical Nature of Hot and Dense QCD Matter by :

Download or read book Structure and Dynamical Nature of Hot and Dense QCD Matter written by and published by . This book was released on 1991 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Static and dynamical properties of QCD at finite temperature and density are reviewed. Non-perturbative aspects of the QCD plasma and the modification of the hadron properties associated with the chiral transition are discussed on the basis of lattice data, effective theories and QCD sum rules. Special emphasis is laid on the importance of the finite baryon density to see the effects of the restoration of chiral symmetry in experiment.


The CBM Physics Book

The CBM Physics Book

Author: Bengt Friman

Publisher: Springer Science & Business Media

Published: 2011-03-10

Total Pages: 973

ISBN-13: 3642132928

DOWNLOAD EBOOK

This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.


Book Synopsis The CBM Physics Book by : Bengt Friman

Download or read book The CBM Physics Book written by Bengt Friman and published by Springer Science & Business Media. This book was released on 2011-03-10 with total page 973 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.


Density Functional Equation of State and Its Application to the Phenomenology of Heavy-Ion Collisions

Density Functional Equation of State and Its Application to the Phenomenology of Heavy-Ion Collisions

Author: Agnieszka Malgorzata Sorensen

Publisher:

Published: 2021

Total Pages: 330

ISBN-13:

DOWNLOAD EBOOK

A prominent goal within the field of modern heavy-ion collisions is to uncover the phase diagram of QCD. Studies of the properties of systems created in heavy-ion collisions strongly suggest that a new state of matter described by quark and gluon degrees of freedom, the quark-gluon plasma, is created when nuclei are collided at very high-energies. Consequently, the QCD phase diagram may contain a rich structure in regions currently accessible to heavy-ion experiments, including a possible critical point where the transformation between hadronic and partonic matter changes from a smooth crossover to a first-order phase transition. Whether this is the case will have to be born out through a combination of experimental analyses and state-of-the-art simulations of heavy-ion collisions. We present a mean-field model of the dense nuclear matter equation of state designed for use in computationally demanding hadronic transport simulations. Our approach, based on the relativistic Landau Fermi-liquid theory, allows us to construct a family of equations of state spanning a wide range of possible bulk properties of dense QCD matter. For the application to simulations of heavy-ion collisions at intermediate beam energies, and in particular having in mind studies centered on probing the regions of the QCD phase diagram most relevant to the search for the QCD critical point, we further present and discuss parametrizations of the developed equation of state describing dense nuclear matter with two phase transitions: the known nuclear-liquid gas phase transition in ordinary nuclear matter, with its experimentally observed properties, and a postulated phase transition at high temperatures and high baryon number densities, meant to model the QCD phase transition from hadronic to quark and gluon degrees of freedom. We implement the developed model in the hadronic transport code SMASH, and show that the resulting dynamic behavior reproduces theoretical expectations for the thermodynamic properties of the system based on the underlying equation of state. In particular, we discuss simulations of systems initialized in regions of the phase diagram affected by the conjectured QCD critical point, and we demonstrate that they reproduce effects due to critical behavior. Specifically, we show that pair distribution functions calculated from hadronic transport simulation data are consistent with theoretical expectations based on the second-order cumulant ratio, and can be used as a signature of crossing the phase diagram in the vicinity of a critical point. Through this, we validate the use of hadronic transport codes as a tool to study signals of a phase transition in dense nuclear matter. We additionally present a novel method that may enable a measurement of the speed of sound and its derivative with respect to the baryon number density in heavy-ion collisions. The devised approach is based on a connection between the speed of sound and the cumulants of the net baryon number, which in the context of the search for the QCD critical point are given considerable attention due to their potential to signal critical fluctuations. We confirm the applicability of the proposed method in two models of dense nuclear matter, including the parametrization of the equation of state developed in this work. Application of our approach to available experimental data implies that the derivative of the speed of sound is non-monotonic in systems created in collisions at intermediate to low energies, which in turn may be connected to non-trivial features in the underlying equation of state.


Book Synopsis Density Functional Equation of State and Its Application to the Phenomenology of Heavy-Ion Collisions by : Agnieszka Malgorzata Sorensen

Download or read book Density Functional Equation of State and Its Application to the Phenomenology of Heavy-Ion Collisions written by Agnieszka Malgorzata Sorensen and published by . This book was released on 2021 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: A prominent goal within the field of modern heavy-ion collisions is to uncover the phase diagram of QCD. Studies of the properties of systems created in heavy-ion collisions strongly suggest that a new state of matter described by quark and gluon degrees of freedom, the quark-gluon plasma, is created when nuclei are collided at very high-energies. Consequently, the QCD phase diagram may contain a rich structure in regions currently accessible to heavy-ion experiments, including a possible critical point where the transformation between hadronic and partonic matter changes from a smooth crossover to a first-order phase transition. Whether this is the case will have to be born out through a combination of experimental analyses and state-of-the-art simulations of heavy-ion collisions. We present a mean-field model of the dense nuclear matter equation of state designed for use in computationally demanding hadronic transport simulations. Our approach, based on the relativistic Landau Fermi-liquid theory, allows us to construct a family of equations of state spanning a wide range of possible bulk properties of dense QCD matter. For the application to simulations of heavy-ion collisions at intermediate beam energies, and in particular having in mind studies centered on probing the regions of the QCD phase diagram most relevant to the search for the QCD critical point, we further present and discuss parametrizations of the developed equation of state describing dense nuclear matter with two phase transitions: the known nuclear-liquid gas phase transition in ordinary nuclear matter, with its experimentally observed properties, and a postulated phase transition at high temperatures and high baryon number densities, meant to model the QCD phase transition from hadronic to quark and gluon degrees of freedom. We implement the developed model in the hadronic transport code SMASH, and show that the resulting dynamic behavior reproduces theoretical expectations for the thermodynamic properties of the system based on the underlying equation of state. In particular, we discuss simulations of systems initialized in regions of the phase diagram affected by the conjectured QCD critical point, and we demonstrate that they reproduce effects due to critical behavior. Specifically, we show that pair distribution functions calculated from hadronic transport simulation data are consistent with theoretical expectations based on the second-order cumulant ratio, and can be used as a signature of crossing the phase diagram in the vicinity of a critical point. Through this, we validate the use of hadronic transport codes as a tool to study signals of a phase transition in dense nuclear matter. We additionally present a novel method that may enable a measurement of the speed of sound and its derivative with respect to the baryon number density in heavy-ion collisions. The devised approach is based on a connection between the speed of sound and the cumulants of the net baryon number, which in the context of the search for the QCD critical point are given considerable attention due to their potential to signal critical fluctuations. We confirm the applicability of the proposed method in two models of dense nuclear matter, including the parametrization of the equation of state developed in this work. Application of our approach to available experimental data implies that the derivative of the speed of sound is non-monotonic in systems created in collisions at intermediate to low energies, which in turn may be connected to non-trivial features in the underlying equation of state.


Nuclear Physics

Nuclear Physics

Author: National Research Council

Publisher: National Academies Press

Published: 1999-03-31

Total Pages: 222

ISBN-13: 0309173663

DOWNLOAD EBOOK

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.


Book Synopsis Nuclear Physics by : National Research Council

Download or read book Nuclear Physics written by National Research Council and published by National Academies Press. This book was released on 1999-03-31 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.


Strongly Interacting Matter at High Energy Density

Strongly Interacting Matter at High Energy Density

Author:

Publisher:

Published: 2008

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.


Book Synopsis Strongly Interacting Matter at High Energy Density by :

Download or read book Strongly Interacting Matter at High Energy Density written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.


Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

Author: Johann Rafelski

Publisher: Springer

Published: 2015-10-21

Total Pages: 441

ISBN-13: 3319175459

DOWNLOAD EBOOK

This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.


Book Synopsis Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN by : Johann Rafelski

Download or read book Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN written by Johann Rafelski and published by Springer. This book was released on 2015-10-21 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma -- announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gaździcki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and to the rise of the experimental relativistic heavy ion collision program. These parts contain previously unpublished material authored by Hagedorn and Rafelski: conference retrospectives, research notes, workshop reports, in some instances abbreviated to avoid duplication of material, and rounded off with the editor's explanatory notes. About the editor: Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Bor n in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner in Frankfurt, Germany in 1973. Rafelski arrived at CERN in 1977, where in a joint effort with Hagedorn he contributed greatly to the establishment of the relativistic heavy ion collision, and quark-gluon plasma research fields. Moving on, with stops in Frankfurt and Cape Town, to Arizona, he invented and developed the strangeness quark flavor as the signature of quark-gluon plasma.


New View of the QCD Phase Diagram

New View of the QCD Phase Diagram

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Quarkyonic matter is confining but can have densities much larger than 3QCD. Its existence isargued in the large Nc limit of QCD and implies that there are at least three phases of QCD with greatly different bulk properties. These are a Confined Phase of hadrons, a Deconfined Phase ofquarks and gluons, and the Quarkyonic Phase. In the Quarkyonic Phase, the baryon density isaccounted for by a quasi-free gas of quarks, and the the antiquarks and gluons are confined intomesons, glueballs. Quarks near the Fermi surface also are treated as baryons. (In addition tothese phases, there is a color superconducting phase that has vastly different transport properties than the above, but with bulk properties, such as pressure and energy density, that are not greatlydifferent than that of Quarkyonic Matter.).


Book Synopsis New View of the QCD Phase Diagram by :

Download or read book New View of the QCD Phase Diagram written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Quarkyonic matter is confining but can have densities much larger than 3QCD. Its existence isargued in the large Nc limit of QCD and implies that there are at least three phases of QCD with greatly different bulk properties. These are a Confined Phase of hadrons, a Deconfined Phase ofquarks and gluons, and the Quarkyonic Phase. In the Quarkyonic Phase, the baryon density isaccounted for by a quasi-free gas of quarks, and the the antiquarks and gluons are confined intomesons, glueballs. Quarks near the Fermi surface also are treated as baryons. (In addition tothese phases, there is a color superconducting phase that has vastly different transport properties than the above, but with bulk properties, such as pressure and energy density, that are not greatlydifferent than that of Quarkyonic Matter.).


Dirac Spectra in Dense QCD

Dirac Spectra in Dense QCD

Author: Takuya Kanazawa

Publisher: Springer Science & Business Media

Published: 2012-11-02

Total Pages: 145

ISBN-13: 4431541659

DOWNLOAD EBOOK

Gaining a theoretical understanding of the properties of ultra-relativistic dense matter has been one of the most important and challenging goals in quantum chromodynamics (QCD). In this thesis, the author analyzes dense quark matter in QCD with gauge group SU(2) using low-energy effective theoretical techniques and elucidates a novel connection between statistical properties of the Dirac operator spectrum at high baryon chemical potential and a special class of random matrix theories. This work can be viewed as an extension of a similar correspondence between QCD and matrix models which was previously known only for infinitesimal chemical potentials. In future numerical simulations of dense matter the analytical results reported here are expected to serve as a useful tool to extract physical observables such as the BCS gap from numerical data on the Dirac spectrum.


Book Synopsis Dirac Spectra in Dense QCD by : Takuya Kanazawa

Download or read book Dirac Spectra in Dense QCD written by Takuya Kanazawa and published by Springer Science & Business Media. This book was released on 2012-11-02 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaining a theoretical understanding of the properties of ultra-relativistic dense matter has been one of the most important and challenging goals in quantum chromodynamics (QCD). In this thesis, the author analyzes dense quark matter in QCD with gauge group SU(2) using low-energy effective theoretical techniques and elucidates a novel connection between statistical properties of the Dirac operator spectrum at high baryon chemical potential and a special class of random matrix theories. This work can be viewed as an extension of a similar correspondence between QCD and matrix models which was previously known only for infinitesimal chemical potentials. In future numerical simulations of dense matter the analytical results reported here are expected to serve as a useful tool to extract physical observables such as the BCS gap from numerical data on the Dirac spectrum.


Hadrons And Nuclei From Qcd - Proceedings Of The International School-seminar '93

Hadrons And Nuclei From Qcd - Proceedings Of The International School-seminar '93

Author: Keisuke Fujii

Publisher: World Scientific

Published: 1994-05-06

Total Pages: 414

ISBN-13: 9814552283

DOWNLOAD EBOOK

This volume presents topics in which researchers in elementary particle and nuclear physics are commonly interested: nonperturbative aspects of QCD and chiral properties of hadrons, relativistic heavy ion reactions and quark-gluon plasma, nuclear matter at high temperature/ density, lattice QCD, quark structure of hadrons and nuclei, high q2 phenomena in hadrons and nuclei, heavy quarks and weak interaction, hyperon interactions and hypernuclei, relativistic nuclear theory, recent experimentals and other topics.Speakers: A A Andrianov, H Ejiri, V N Fetisov, Y Iwasaki, C Ciofi Degli Atti, V G Kadyshevsky, D I Kazakov, R Brockmann, A P Kobushkin, C M Ko, T Humanic, S H Lee, T Matsui, Y Mizuno, Y M Musakhanov, T Morü, M Namiki, S Saito, T-A Shibata, T Suzuki, A I Titov, G M Vagradov, M K Volkov, M Oka, A V Shebeko, S N Yang, G M Zinovjev, etc.


Book Synopsis Hadrons And Nuclei From Qcd - Proceedings Of The International School-seminar '93 by : Keisuke Fujii

Download or read book Hadrons And Nuclei From Qcd - Proceedings Of The International School-seminar '93 written by Keisuke Fujii and published by World Scientific. This book was released on 1994-05-06 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents topics in which researchers in elementary particle and nuclear physics are commonly interested: nonperturbative aspects of QCD and chiral properties of hadrons, relativistic heavy ion reactions and quark-gluon plasma, nuclear matter at high temperature/ density, lattice QCD, quark structure of hadrons and nuclei, high q2 phenomena in hadrons and nuclei, heavy quarks and weak interaction, hyperon interactions and hypernuclei, relativistic nuclear theory, recent experimentals and other topics.Speakers: A A Andrianov, H Ejiri, V N Fetisov, Y Iwasaki, C Ciofi Degli Atti, V G Kadyshevsky, D I Kazakov, R Brockmann, A P Kobushkin, C M Ko, T Humanic, S H Lee, T Matsui, Y Mizuno, Y M Musakhanov, T Morü, M Namiki, S Saito, T-A Shibata, T Suzuki, A I Titov, G M Vagradov, M K Volkov, M Oka, A V Shebeko, S N Yang, G M Zinovjev, etc.