Protein Production by Biotechnology

Protein Production by Biotechnology

Author: T.J.R. Harris

Publisher: Springer

Published: 2012-12-06

Total Pages: 250

ISBN-13: 1461315654

DOWNLOAD EBOOK

There are very few parts of biology that remain free from the influence of Genetic Engineering developed in the early 1970s. Disciplines as wide apart as Brewing, Forensic Science and Population Genetics have all been affected in some way. The major impact, however, has been to create a new science of Biotechnology - a part of which is the production of proteins in a variety of cellular systems. Initially, bacterial systems such as E. coli were used but it soon became apparent that this prokaryotic host was not suitable for the preparation of more complicated proteins. In December 1988, a Symposium sponsored by the Biological Council organised by Dr Chris Hentschel and myself was held at the Middlesex in London to discuss alternative methods of Hospital Medical School protein production and to review some ofthe applications of the proteins so produced. The presentations at this meeting form the substance ofthis book. The theme is apparent from the first part where the expression of proteins and their domains in yeast is described and compared to other fungal and bacterial systems, such as Aspergillus and Bacillus subtilis. The successful use of recombinant yeast to produce hepatitis B surface antigen for vaccine purposes is particularly pertinent.


Book Synopsis Protein Production by Biotechnology by : T.J.R. Harris

Download or read book Protein Production by Biotechnology written by T.J.R. Harris and published by Springer. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are very few parts of biology that remain free from the influence of Genetic Engineering developed in the early 1970s. Disciplines as wide apart as Brewing, Forensic Science and Population Genetics have all been affected in some way. The major impact, however, has been to create a new science of Biotechnology - a part of which is the production of proteins in a variety of cellular systems. Initially, bacterial systems such as E. coli were used but it soon became apparent that this prokaryotic host was not suitable for the preparation of more complicated proteins. In December 1988, a Symposium sponsored by the Biological Council organised by Dr Chris Hentschel and myself was held at the Middlesex in London to discuss alternative methods of Hospital Medical School protein production and to review some ofthe applications of the proteins so produced. The presentations at this meeting form the substance ofthis book. The theme is apparent from the first part where the expression of proteins and their domains in yeast is described and compared to other fungal and bacterial systems, such as Aspergillus and Bacillus subtilis. The successful use of recombinant yeast to produce hepatitis B surface antigen for vaccine purposes is particularly pertinent.


Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Author: Otto-Wilhelm Merten

Publisher: Springer Science & Business Media

Published: 2001-11-30

Total Pages: 434

ISBN-13: 9780792371373

DOWNLOAD EBOOK

The general field of fundamental and applied biotechnology becomes increasingly important for the production of biologicals for human and veterinary use, by using prokaryotic and eukaryotic microorganisms. The papers in the present book are refereed articles compiled from oral and poster presentations from the EFB Meeting on Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology, which was organized in Semmering/A from 5th to 8th October 2000. A special feature of this meeting was the comparison of different classes of host cells, mainly bacteria, yeasts, filamentous fungi, and animal cells, which made obvious that many physiological features of recombinant protein formation, like cell nutrition, stress responses, protein folding and secretion, or genetic stability, follow similar patterns in different expression systems. This comparative aspect is by far the point of most interest because such comparisons are rarely done, and if they are done, their results are most often kept secret by the companies who generated them. Audience: Presently, a comparable book does not exist because the compiling of manuscripts from all fields of biotechnology (prokaryotic as well as eukaryotic, up to animal cell biotechnology) is not done in general. This particularity makes this book very interesting for postgraduate students and professionals in the large field of biotechnology who want to get a more global view on the current state of the expression of recombinant biologicals in different host cell systems, the physiological problems associated with the use of different expression systems, potential approaches to solve such difficulties by metabolic engineering or the use of other host cells, and the cooperation between process development and strain improvement, which is crucial for the optimisation of both the production strain and the process. This book should be in every library of an institution/organization involved in biotechnology.


Book Synopsis Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology by : Otto-Wilhelm Merten

Download or read book Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology written by Otto-Wilhelm Merten and published by Springer Science & Business Media. This book was released on 2001-11-30 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general field of fundamental and applied biotechnology becomes increasingly important for the production of biologicals for human and veterinary use, by using prokaryotic and eukaryotic microorganisms. The papers in the present book are refereed articles compiled from oral and poster presentations from the EFB Meeting on Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology, which was organized in Semmering/A from 5th to 8th October 2000. A special feature of this meeting was the comparison of different classes of host cells, mainly bacteria, yeasts, filamentous fungi, and animal cells, which made obvious that many physiological features of recombinant protein formation, like cell nutrition, stress responses, protein folding and secretion, or genetic stability, follow similar patterns in different expression systems. This comparative aspect is by far the point of most interest because such comparisons are rarely done, and if they are done, their results are most often kept secret by the companies who generated them. Audience: Presently, a comparable book does not exist because the compiling of manuscripts from all fields of biotechnology (prokaryotic as well as eukaryotic, up to animal cell biotechnology) is not done in general. This particularity makes this book very interesting for postgraduate students and professionals in the large field of biotechnology who want to get a more global view on the current state of the expression of recombinant biologicals in different host cell systems, the physiological problems associated with the use of different expression systems, potential approaches to solve such difficulties by metabolic engineering or the use of other host cells, and the cooperation between process development and strain improvement, which is crucial for the optimisation of both the production strain and the process. This book should be in every library of an institution/organization involved in biotechnology.


Protein Hydrolysates in Biotechnology

Protein Hydrolysates in Biotechnology

Author: Vijai K. Pasupuleti

Publisher: Springer Science & Business Media

Published: 2010-08-28

Total Pages: 237

ISBN-13: 1402066740

DOWNLOAD EBOOK

Protein hydrolysates, otherwise commonly known as peptones or peptides, are used in a wide variety of products in fermentation and biotechnology industries. The term “peptone” was first introduced in 1880 by Nagelli for growing bacterial cultures. However, later it was discovered that peptones derived from the partial digestion of proteins would furnish organic nitrogen in readily available form. Ever since, p- tones, which are commonly known as protein hydrolysates, have been used not only for growth of microbial cultures, but also as nitrogen source in commercial fermen- tions using animal cells and recombinant microorganisms for the production of value added products such as therapeutic proteins, hormones, vaccines, etc. Today, the characterization, screening and manufacturing of protein hyd- lysates has become more sophisticated, with the introduction of reliable analytical instrumentation, high throughput screening techniques coupled with statistical design approaches, novel enzymes and efficient downstream processing equipment. This has enabled the introduction of custom-built products for specialized appli- tions in diverse fields of fermentation and biotechnology, such as the following. 1. Protein hydrolysates are used as much more than a simple nitrogen source. For example, the productivities of several therapeutic drugs made by animal cells and recombinant microorganisms have been markedly increased by use of p- tein hydrolysates. This is extremely important when capacities are limited. 2. Protein hydrolysates are employed in the manufacturing of vaccines by ferm- tation processes and also used as vaccine stabilizers.


Book Synopsis Protein Hydrolysates in Biotechnology by : Vijai K. Pasupuleti

Download or read book Protein Hydrolysates in Biotechnology written by Vijai K. Pasupuleti and published by Springer Science & Business Media. This book was released on 2010-08-28 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein hydrolysates, otherwise commonly known as peptones or peptides, are used in a wide variety of products in fermentation and biotechnology industries. The term “peptone” was first introduced in 1880 by Nagelli for growing bacterial cultures. However, later it was discovered that peptones derived from the partial digestion of proteins would furnish organic nitrogen in readily available form. Ever since, p- tones, which are commonly known as protein hydrolysates, have been used not only for growth of microbial cultures, but also as nitrogen source in commercial fermen- tions using animal cells and recombinant microorganisms for the production of value added products such as therapeutic proteins, hormones, vaccines, etc. Today, the characterization, screening and manufacturing of protein hyd- lysates has become more sophisticated, with the introduction of reliable analytical instrumentation, high throughput screening techniques coupled with statistical design approaches, novel enzymes and efficient downstream processing equipment. This has enabled the introduction of custom-built products for specialized appli- tions in diverse fields of fermentation and biotechnology, such as the following. 1. Protein hydrolysates are used as much more than a simple nitrogen source. For example, the productivities of several therapeutic drugs made by animal cells and recombinant microorganisms have been markedly increased by use of p- tein hydrolysates. This is extremely important when capacities are limited. 2. Protein hydrolysates are employed in the manufacturing of vaccines by ferm- tation processes and also used as vaccine stabilizers.


Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology

Author: Otto-Wilhelm Merten

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 396

ISBN-13: 9401597499

DOWNLOAD EBOOK

More then 20 years have passed now since the first recombinant protein producing microorganisms have been developed. In the meanwhile, numerous proteins have been produced in bacteria, yeasts and filamentous fungi, as weIl as higher eukaryotic cells, and even entire plants and animals. Many recombinant proteins are on the market today, and some of them reached substantial market volumes. On the first sight one would expect the technology - including the physiology of the host strains - to be optimised in detail after a 20 year's period of development. However, several constraints have limited the incentive for optimisation, especially in the pharmaceutical industry like the urge to proceed quickly or the requirement to define the production parameters for registration early in the development phase. The additional expenses for registration of a new production strain often prohibits a change to an optimised strain. A continuous optimisation of the entire production process is not feasible for the same reasons.


Book Synopsis Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology by : Otto-Wilhelm Merten

Download or read book Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology written by Otto-Wilhelm Merten and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: More then 20 years have passed now since the first recombinant protein producing microorganisms have been developed. In the meanwhile, numerous proteins have been produced in bacteria, yeasts and filamentous fungi, as weIl as higher eukaryotic cells, and even entire plants and animals. Many recombinant proteins are on the market today, and some of them reached substantial market volumes. On the first sight one would expect the technology - including the physiology of the host strains - to be optimised in detail after a 20 year's period of development. However, several constraints have limited the incentive for optimisation, especially in the pharmaceutical industry like the urge to proceed quickly or the requirement to define the production parameters for registration early in the development phase. The additional expenses for registration of a new production strain often prohibits a change to an optimised strain. A continuous optimisation of the entire production process is not feasible for the same reasons.


Mammalian Cell Biotechnology in Protein Production

Mammalian Cell Biotechnology in Protein Production

Author: Hansjörg Hauser

Publisher: Walter de Gruyter

Published: 2011-07-13

Total Pages: 513

ISBN-13: 3110809281

DOWNLOAD EBOOK

„Hauser und Wagner haben die neuen Möglichkeiten der Mammalian Cell Biology sehr anregend dargestellt.“ Prof. Dr. Hans Fritz, Ludwig-Maximilians-Universität München


Book Synopsis Mammalian Cell Biotechnology in Protein Production by : Hansjörg Hauser

Download or read book Mammalian Cell Biotechnology in Protein Production written by Hansjörg Hauser and published by Walter de Gruyter. This book was released on 2011-07-13 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: „Hauser und Wagner haben die neuen Möglichkeiten der Mammalian Cell Biology sehr anregend dargestellt.“ Prof. Dr. Hans Fritz, Ludwig-Maximilians-Universität München


Production Technology of Recombinant Therapeutic Proteins

Production Technology of Recombinant Therapeutic Proteins

Author: Chiranjib Chakraborty

Publisher: Daya Books

Published: 2004

Total Pages: 290

ISBN-13: 9788176221047

DOWNLOAD EBOOK

An Increasing Number Of Recombinant Therapeutic Proteins Are Currently Being Developed, Tested In Clinical Trials And Marketed For Used. Most Of The Recombinant Therapeutic Proteins Are Being Successfully Produced Into Escherichia Coli And Pichia Pastoris Expression System. These Two Expression Systems Are Very Much Efficient And Cost Effective. This Book Takes A Close Look Of These Two Expression Systems And Fermentation Conditions, Purification Strategies Of Different Recombinant Proteins. This Book Also Discusses The Market Size And Cost Analysis For The Production Of Different Therapeutic Proteins And Some General Experimental Protocols For Production. Contents Part I: Recombinant Protein Expression Into Escherichia Coli And Fermentation Conditions; Chapter 1: Introduction; Chapter 2: Construction Of Efficient Expression Vector (Plasmid); Chapter 3: Factors Affecting Transcription, Promoters, Upstream Elements, Transcriptional Terminators, Transcriptional Antitermin, Tightly Regulated Expression Systems; Chapter 4: Mrna Stability; Chapter 5: Factors Affecting Translation, Mrna Translational Initiator, Translational Enhancers, Translational Termination; Chapter 6: Expression Of Target Protein And The Compartments Of Expression, Cytoplasmic Expression, Periplasmic Expression, Extracellular Secretion; Chapter 7: Fusion Proteins; Chapter 8: Post-Translational Protein Folding; Chapter 8: Codon Usage; Chapter 10: Protein Degradation; Chapter 11: Fermentation Conditions For High-Density Cell Cultivation (Hdcc), Growth Medium, Efficient Production Of Recombinant Protein In Hdcc, Nutrient Feeding Strategy In Hdcc; Chapter 12: One Examples Of Protein Production Using E. Coli Expression System; Chapter 13: Conclusion. Part Ii: Recombinant Protein Expression Into Yeast, Pichia Pastoris And Fermentation Conditions; Chapter 1: Introduction; Chapter 2: Why P. Pastoris? Chapter 3: Construction Of Expression Strains, Expression Vectors, Alternative Promoters, Host Strains, Methanol Utilisation Phenotype, Protease-Reduced Host Strains, Integration Of Expression Vectors Into The P. Pastoris Genome, Generating Multicopy Strains; Chapter 4: Post-Translational Modifications Of Secreted Proteins, Secretion Signal Selection, N-Linked Glycosylation; Chapter 5: Production Of Recombinant Proteins In Fermenter Cultures Of The Yeast, Pichia Pastoris, Conceptual Basis For The P. Pastoris Expression System, High-Level Expression In Fermenter Cultures, Protein-Specific Adjustments To Improve Yield, Glycosylation Of Recombinant Proteins, Secretion Signals; Chapter 6: One Examples Of Protein Producing Using P. Pastoris Expression System, Chapter 7: Conclusion. Part Iii: Purification Strategies For Recombinant Proteins; Chapter 1: Purification Of Proteins; Chapter 2: Conventional Chromatography, Ion Exchange Chromatography, Reversed Phase Chromatography, Gel Permeation Chromatography, Affinity Chromatography, Affinity Tags, Cleavage, Conclusion. Part Iv: Market Size And Cost Analysis For The Production Of Therapeutic Proteins; Chapter 1: Market Size Of Therapeutic Proteins; Chapter 2: Outline Structure Of A Productin Unit And Cost Analysis For The Production Of Three Therapeutic Proteins. Part V: General Experimental Protocols; Chapter 1: Different Experimental Protocols, Preparation Of Genome Dna For E. Coli, A Differnt Method For Preparation Of Genomic Dna From Bacteria, Preparation Of Proteins From Periplasm (Osmotic Shock Method), Preparation Of Proteins From Outer Membrane, Transformation Of Plasmid Dna Into E. Coli (Calcium Chloride/Heat Shock Method), Transformation Of Plasmid Dna Into E. Coli (Electroporation), Sds-Page For Large Proteins, Sds-Page For Small Peptide, Pcr Amplification Of Dna, Protein Quantification: Brandford Method, Trans-Bloting For Protein, Restriction Enzyme Digestion Of Dna, Phenol/Chloroform Extraction Of Dna, Ethanol Precipitation Of Dna, Agarose Gel Electrophoresis, Transformation Of E. Coli By Electroporation (Alternative Method), Wizard Tm Pcr Preps Dna Purification System For Rapid, Purification Of Dna Fragments, Alternate Method For Purifying Dna From Agarose Gels, Southern Blotting, Rt Pcr Protocol, Using Superscript Reverse Transcriptase, Preparation Of Sequencing Gels, Isolation Of Rna From Mammalian Cells Using Rnazoltm (Teltest), Preparation For Yeast Transformation, Yeast Transformation, Digesting Prsq-Ura3 With Bamhi, Genomic Dna Preparation Of Yeast, Ligation (Circularisation) Of Genomic Dna Fragments, E. Coli Transformation (Alternate Method), Dna Miniprep From E. Coli (Alternate Method), Basic Plasmid Dna Isolation Protocol, Identification And Determination Of Amount Rec-Hum Proteins Via An Immunoenzymatic Test (Elisa), Determination Of Host Dna Contaminant Into R Hu Protein Through Dot Blot Method, Protocols For Down-Stream Processing.


Book Synopsis Production Technology of Recombinant Therapeutic Proteins by : Chiranjib Chakraborty

Download or read book Production Technology of Recombinant Therapeutic Proteins written by Chiranjib Chakraborty and published by Daya Books. This book was released on 2004 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Increasing Number Of Recombinant Therapeutic Proteins Are Currently Being Developed, Tested In Clinical Trials And Marketed For Used. Most Of The Recombinant Therapeutic Proteins Are Being Successfully Produced Into Escherichia Coli And Pichia Pastoris Expression System. These Two Expression Systems Are Very Much Efficient And Cost Effective. This Book Takes A Close Look Of These Two Expression Systems And Fermentation Conditions, Purification Strategies Of Different Recombinant Proteins. This Book Also Discusses The Market Size And Cost Analysis For The Production Of Different Therapeutic Proteins And Some General Experimental Protocols For Production. Contents Part I: Recombinant Protein Expression Into Escherichia Coli And Fermentation Conditions; Chapter 1: Introduction; Chapter 2: Construction Of Efficient Expression Vector (Plasmid); Chapter 3: Factors Affecting Transcription, Promoters, Upstream Elements, Transcriptional Terminators, Transcriptional Antitermin, Tightly Regulated Expression Systems; Chapter 4: Mrna Stability; Chapter 5: Factors Affecting Translation, Mrna Translational Initiator, Translational Enhancers, Translational Termination; Chapter 6: Expression Of Target Protein And The Compartments Of Expression, Cytoplasmic Expression, Periplasmic Expression, Extracellular Secretion; Chapter 7: Fusion Proteins; Chapter 8: Post-Translational Protein Folding; Chapter 8: Codon Usage; Chapter 10: Protein Degradation; Chapter 11: Fermentation Conditions For High-Density Cell Cultivation (Hdcc), Growth Medium, Efficient Production Of Recombinant Protein In Hdcc, Nutrient Feeding Strategy In Hdcc; Chapter 12: One Examples Of Protein Production Using E. Coli Expression System; Chapter 13: Conclusion. Part Ii: Recombinant Protein Expression Into Yeast, Pichia Pastoris And Fermentation Conditions; Chapter 1: Introduction; Chapter 2: Why P. Pastoris? Chapter 3: Construction Of Expression Strains, Expression Vectors, Alternative Promoters, Host Strains, Methanol Utilisation Phenotype, Protease-Reduced Host Strains, Integration Of Expression Vectors Into The P. Pastoris Genome, Generating Multicopy Strains; Chapter 4: Post-Translational Modifications Of Secreted Proteins, Secretion Signal Selection, N-Linked Glycosylation; Chapter 5: Production Of Recombinant Proteins In Fermenter Cultures Of The Yeast, Pichia Pastoris, Conceptual Basis For The P. Pastoris Expression System, High-Level Expression In Fermenter Cultures, Protein-Specific Adjustments To Improve Yield, Glycosylation Of Recombinant Proteins, Secretion Signals; Chapter 6: One Examples Of Protein Producing Using P. Pastoris Expression System, Chapter 7: Conclusion. Part Iii: Purification Strategies For Recombinant Proteins; Chapter 1: Purification Of Proteins; Chapter 2: Conventional Chromatography, Ion Exchange Chromatography, Reversed Phase Chromatography, Gel Permeation Chromatography, Affinity Chromatography, Affinity Tags, Cleavage, Conclusion. Part Iv: Market Size And Cost Analysis For The Production Of Therapeutic Proteins; Chapter 1: Market Size Of Therapeutic Proteins; Chapter 2: Outline Structure Of A Productin Unit And Cost Analysis For The Production Of Three Therapeutic Proteins. Part V: General Experimental Protocols; Chapter 1: Different Experimental Protocols, Preparation Of Genome Dna For E. Coli, A Differnt Method For Preparation Of Genomic Dna From Bacteria, Preparation Of Proteins From Periplasm (Osmotic Shock Method), Preparation Of Proteins From Outer Membrane, Transformation Of Plasmid Dna Into E. Coli (Calcium Chloride/Heat Shock Method), Transformation Of Plasmid Dna Into E. Coli (Electroporation), Sds-Page For Large Proteins, Sds-Page For Small Peptide, Pcr Amplification Of Dna, Protein Quantification: Brandford Method, Trans-Bloting For Protein, Restriction Enzyme Digestion Of Dna, Phenol/Chloroform Extraction Of Dna, Ethanol Precipitation Of Dna, Agarose Gel Electrophoresis, Transformation Of E. Coli By Electroporation (Alternative Method), Wizard Tm Pcr Preps Dna Purification System For Rapid, Purification Of Dna Fragments, Alternate Method For Purifying Dna From Agarose Gels, Southern Blotting, Rt Pcr Protocol, Using Superscript Reverse Transcriptase, Preparation Of Sequencing Gels, Isolation Of Rna From Mammalian Cells Using Rnazoltm (Teltest), Preparation For Yeast Transformation, Yeast Transformation, Digesting Prsq-Ura3 With Bamhi, Genomic Dna Preparation Of Yeast, Ligation (Circularisation) Of Genomic Dna Fragments, E. Coli Transformation (Alternate Method), Dna Miniprep From E. Coli (Alternate Method), Basic Plasmid Dna Isolation Protocol, Identification And Determination Of Amount Rec-Hum Proteins Via An Immunoenzymatic Test (Elisa), Determination Of Host Dna Contaminant Into R Hu Protein Through Dot Blot Method, Protocols For Down-Stream Processing.


Plants as Factories for Protein Production

Plants as Factories for Protein Production

Author: Elizabeth E. Hood

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 232

ISBN-13: 9401726930

DOWNLOAD EBOOK

This exciting volume Plants as Factories for Protein Production, edited by Drs. Elizabeth E. Hood and John A. Howard, contains chapters by experts in the field of molecular farming. The information within addresses the leading plant systems for recombinant protein production, as well as the progress being made in leading product categories - human pharmaceuticals, animal health, and industrial enzymes. More importantly, the book includes chapters that address the hot topics of production, containment, regulatory, and legal aspects that are quickly coming to the forefront of the industry. This most timely text is appropriate for graduate students and post-doctoral fellows, as well as being a key text for faculty, pharmaceutical producers, and industrial enzyme users.


Book Synopsis Plants as Factories for Protein Production by : Elizabeth E. Hood

Download or read book Plants as Factories for Protein Production written by Elizabeth E. Hood and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exciting volume Plants as Factories for Protein Production, edited by Drs. Elizabeth E. Hood and John A. Howard, contains chapters by experts in the field of molecular farming. The information within addresses the leading plant systems for recombinant protein production, as well as the progress being made in leading product categories - human pharmaceuticals, animal health, and industrial enzymes. More importantly, the book includes chapters that address the hot topics of production, containment, regulatory, and legal aspects that are quickly coming to the forefront of the industry. This most timely text is appropriate for graduate students and post-doctoral fellows, as well as being a key text for faculty, pharmaceutical producers, and industrial enzyme users.


Commercial Plant-Produced Recombinant Protein Products

Commercial Plant-Produced Recombinant Protein Products

Author: John A. Howard

Publisher: Springer

Published: 2014-09-01

Total Pages: 282

ISBN-13: 3662438364

DOWNLOAD EBOOK

Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.


Book Synopsis Commercial Plant-Produced Recombinant Protein Products by : John A. Howard

Download or read book Commercial Plant-Produced Recombinant Protein Products written by John A. Howard and published by Springer. This book was released on 2014-09-01 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.


Basic and Applied Aspects of Biotechnology

Basic and Applied Aspects of Biotechnology

Author: Varsha Gupta

Publisher: Springer

Published: 2016-10-22

Total Pages: 543

ISBN-13: 9811008752

DOWNLOAD EBOOK

This book explores the journey of biotechnology, searching for new avenues and noting the impressive accomplishments to date. It has harmonious blend of facts, applications and new ideas. Fast-paced biotechnologies are broadly applied and are being continuously explored in areas like the environmental, industrial, agricultural and medical sciences. The sequencing of the human genome has opened new therapeutic opportunities and enriched the field of medical biotechnology while analysis of biomolecules using proteomics and microarray technologies along with the simultaneous discovery and development of new modes of detection are paving the way for ever-faster and more reliable diagnostic methods. Life-saving bio-pharmaceuticals are being churned out at an amazing rate, and the unraveling of biological processes has facilitated drug designing and discovery processes. Advances in regenerative medical technologies (stem cell therapy, tissue engineering, and gene therapy) look extremely promising, transcending the limitations of all existing fields and opening new dimensions for characterizing and combating diseases.


Book Synopsis Basic and Applied Aspects of Biotechnology by : Varsha Gupta

Download or read book Basic and Applied Aspects of Biotechnology written by Varsha Gupta and published by Springer. This book was released on 2016-10-22 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the journey of biotechnology, searching for new avenues and noting the impressive accomplishments to date. It has harmonious blend of facts, applications and new ideas. Fast-paced biotechnologies are broadly applied and are being continuously explored in areas like the environmental, industrial, agricultural and medical sciences. The sequencing of the human genome has opened new therapeutic opportunities and enriched the field of medical biotechnology while analysis of biomolecules using proteomics and microarray technologies along with the simultaneous discovery and development of new modes of detection are paving the way for ever-faster and more reliable diagnostic methods. Life-saving bio-pharmaceuticals are being churned out at an amazing rate, and the unraveling of biological processes has facilitated drug designing and discovery processes. Advances in regenerative medical technologies (stem cell therapy, tissue engineering, and gene therapy) look extremely promising, transcending the limitations of all existing fields and opening new dimensions for characterizing and combating diseases.


Recombinant protein expression in microbial systems

Recombinant protein expression in microbial systems

Author: Eduardo A. Ceccarelli

Publisher: Frontiers E-books

Published: 2014-10-02

Total Pages: 103

ISBN-13: 2889192946

DOWNLOAD EBOOK

With the advent of recombinant DNA technology, expressing heterologous proteins in microorganisms rapidly became the method of choice for their production at laboratory and industrial scale. Bacteria, yeasts and other hosts can be grown to high biomass levels efficiently and inexpensively. Obtaining high yields of recombinant proteins from this material was only feasible thanks to constant research on microbial genetics and physiology that led to novel strains, plasmids and cultivation strategies. Despite the spectacular expansion of the field, there is still much room for progress. Improving the levels of expression and the solubility of a recombinant protein can be quite challenging. Accumulation of the product in the cell can lead to stress responses which affect cell growth. Buildup of insoluble and biologically inactive aggregates (inclusion bodies) lowers the yield of production. This is particularly true for obtaining membrane proteins or high-molecular weight and multi-domain proteins. Also, obtaining eukaryotic proteins in a prokaryotic background (for example, plant or animal proteins in bacteria) results in a product that lack post-translational modifications, often required for functionality. Changing to a eukaryotic host (yeasts or filamentous fungi) may not be a proper solution since the pattern of sugar modifications is different than in higher eukaryotes. Still, many advances in the last couple of decades have provided to researchers a wide variety of strategies to maximize the production of their recombinant protein of choice. Everything starts with the careful selection of the host. Be it bacteria or yeast, a broad list of strains is available for overcoming codon use bias, incorrect disulfide bond formation, protein toxicity and lack of post-translational modifications. Also, a huge catalog of plasmids allows choosing for different fusion partners for improving solubility, protein secretion, chaperone co-expression, antibiotic resistance and promoter strength. Next, controlling culture conditions like temperature, inducer and media composition can bolster recombinant protein production. With this Research Topic, we aim to provide an encyclopedic account of the existing approaches to the expression of recombinant proteins in microorganisms, highlight recent discoveries and analyze the future prospects of this exciting and ever-growing field.


Book Synopsis Recombinant protein expression in microbial systems by : Eduardo A. Ceccarelli

Download or read book Recombinant protein expression in microbial systems written by Eduardo A. Ceccarelli and published by Frontiers E-books. This book was released on 2014-10-02 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advent of recombinant DNA technology, expressing heterologous proteins in microorganisms rapidly became the method of choice for their production at laboratory and industrial scale. Bacteria, yeasts and other hosts can be grown to high biomass levels efficiently and inexpensively. Obtaining high yields of recombinant proteins from this material was only feasible thanks to constant research on microbial genetics and physiology that led to novel strains, plasmids and cultivation strategies. Despite the spectacular expansion of the field, there is still much room for progress. Improving the levels of expression and the solubility of a recombinant protein can be quite challenging. Accumulation of the product in the cell can lead to stress responses which affect cell growth. Buildup of insoluble and biologically inactive aggregates (inclusion bodies) lowers the yield of production. This is particularly true for obtaining membrane proteins or high-molecular weight and multi-domain proteins. Also, obtaining eukaryotic proteins in a prokaryotic background (for example, plant or animal proteins in bacteria) results in a product that lack post-translational modifications, often required for functionality. Changing to a eukaryotic host (yeasts or filamentous fungi) may not be a proper solution since the pattern of sugar modifications is different than in higher eukaryotes. Still, many advances in the last couple of decades have provided to researchers a wide variety of strategies to maximize the production of their recombinant protein of choice. Everything starts with the careful selection of the host. Be it bacteria or yeast, a broad list of strains is available for overcoming codon use bias, incorrect disulfide bond formation, protein toxicity and lack of post-translational modifications. Also, a huge catalog of plasmids allows choosing for different fusion partners for improving solubility, protein secretion, chaperone co-expression, antibiotic resistance and promoter strength. Next, controlling culture conditions like temperature, inducer and media composition can bolster recombinant protein production. With this Research Topic, we aim to provide an encyclopedic account of the existing approaches to the expression of recombinant proteins in microorganisms, highlight recent discoveries and analyze the future prospects of this exciting and ever-growing field.