Proton Exchange Membrane Fuel Cells Modeling

Proton Exchange Membrane Fuel Cells Modeling

Author: Fengge Gao

Publisher: John Wiley & Sons

Published: 2013-02-07

Total Pages: 171

ISBN-13: 1118566378

DOWNLOAD EBOOK

The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions. Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness. This book presents a detailed state of art of PEM fuel cell modeling, with very detailed physical phenomena equations in different physical domains. Examples and a fully coupled multi-physical 1.2 kW PEMFC model are given help the reader better understand how to use the equations.


Book Synopsis Proton Exchange Membrane Fuel Cells Modeling by : Fengge Gao

Download or read book Proton Exchange Membrane Fuel Cells Modeling written by Fengge Gao and published by John Wiley & Sons. This book was released on 2013-02-07 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions. Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness. This book presents a detailed state of art of PEM fuel cell modeling, with very detailed physical phenomena equations in different physical domains. Examples and a fully coupled multi-physical 1.2 kW PEMFC model are given help the reader better understand how to use the equations.


PEM Fuel Cell Modeling and Simulation Using Matlab

PEM Fuel Cell Modeling and Simulation Using Matlab

Author: Colleen Spiegel

Publisher: Elsevier

Published: 2011-08-29

Total Pages: 454

ISBN-13: 0080559018

DOWNLOAD EBOOK

Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations


Book Synopsis PEM Fuel Cell Modeling and Simulation Using Matlab by : Colleen Spiegel

Download or read book PEM Fuel Cell Modeling and Simulation Using Matlab written by Colleen Spiegel and published by Elsevier. This book was released on 2011-08-29 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations


Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane Fuel Cells

Author: Alhussein Albarbar

Publisher: Springer

Published: 2017-11-17

Total Pages: 172

ISBN-13: 3319707272

DOWNLOAD EBOOK

This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells’ static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.


Book Synopsis Proton Exchange Membrane Fuel Cells by : Alhussein Albarbar

Download or read book Proton Exchange Membrane Fuel Cells written by Alhussein Albarbar and published by Springer. This book was released on 2017-11-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells’ static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.


Device and Materials Modeling in PEM Fuel Cells

Device and Materials Modeling in PEM Fuel Cells

Author: Stephen J. Paddison

Publisher: Springer Science & Business Media

Published: 2008-10-15

Total Pages: 596

ISBN-13: 0387786910

DOWNLOAD EBOOK

Computational studies on fuel cell-related issues are increasingly common. These studies range from engineering level models of fuel cell systems and stacks to molecular level, electronic structure calculations on the behavior of membranes and catalysts, and everything in between. This volume explores this range. It is appropriate to ask what, if anything, does this work tell us that we cannot deduce intuitively? Does the emperor have any clothes? In answering this question resolutely in the affirmative, I will also take the liberty to comment a bit on what makes the effort worthwhile to both the perpetrator(s) of the computational study (hereafter I will use the blanket terms modeler and model for both engineering and chemical physics contexts) and to the rest of the world. The requirements of utility are different in the two spheres. As with any activity, there is a range of quality of work within the modeling community. So what constitutes a useful model? What are the best practices, serving both the needs of the promulgator and consumer? Some of the key com- nents are covered below. First, let me provide a word on my ‘credentials’ for such commentary. I have participated in, and sometimes initiated, a c- tinuous series of such efforts devoted to studies of PEMFC components and cells over the past 17 years. All that participation was from the experim- tal, qualitative side of the effort.


Book Synopsis Device and Materials Modeling in PEM Fuel Cells by : Stephen J. Paddison

Download or read book Device and Materials Modeling in PEM Fuel Cells written by Stephen J. Paddison and published by Springer Science & Business Media. This book was released on 2008-10-15 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational studies on fuel cell-related issues are increasingly common. These studies range from engineering level models of fuel cell systems and stacks to molecular level, electronic structure calculations on the behavior of membranes and catalysts, and everything in between. This volume explores this range. It is appropriate to ask what, if anything, does this work tell us that we cannot deduce intuitively? Does the emperor have any clothes? In answering this question resolutely in the affirmative, I will also take the liberty to comment a bit on what makes the effort worthwhile to both the perpetrator(s) of the computational study (hereafter I will use the blanket terms modeler and model for both engineering and chemical physics contexts) and to the rest of the world. The requirements of utility are different in the two spheres. As with any activity, there is a range of quality of work within the modeling community. So what constitutes a useful model? What are the best practices, serving both the needs of the promulgator and consumer? Some of the key com- nents are covered below. First, let me provide a word on my ‘credentials’ for such commentary. I have participated in, and sometimes initiated, a c- tinuous series of such efforts devoted to studies of PEMFC components and cells over the past 17 years. All that participation was from the experim- tal, qualitative side of the effort.


PEM Fuel Cells

PEM Fuel Cells

Author: Jasna Jankovic

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-05-22

Total Pages: 555

ISBN-13: 3110623609

DOWNLOAD EBOOK

This book is a comprehensive introduction to the rapidly developing field of modeling and characterization of PEM fuel cells. It focuses on i) fuel cell performance modeling and performance characterization applicable from single cells to stacks, ii) fundamental and advanced techniques for structural and compositional characterization of fuel cell components and iii) electrocatalyst design. Written by experts in this field, this book is an invaluable tool for graduate students and professionals.


Book Synopsis PEM Fuel Cells by : Jasna Jankovic

Download or read book PEM Fuel Cells written by Jasna Jankovic and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-05-22 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive introduction to the rapidly developing field of modeling and characterization of PEM fuel cells. It focuses on i) fuel cell performance modeling and performance characterization applicable from single cells to stacks, ii) fundamental and advanced techniques for structural and compositional characterization of fuel cell components and iii) electrocatalyst design. Written by experts in this field, this book is an invaluable tool for graduate students and professionals.


Water and Thermal Management of Proton Exchange Membrane Fuel Cells

Water and Thermal Management of Proton Exchange Membrane Fuel Cells

Author: Kui Jiao

Publisher: Elsevier

Published: 2021-06-05

Total Pages: 402

ISBN-13: 032391117X

DOWNLOAD EBOOK

Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. Introduces the transport mechanism for each component of PEMFCs Presents modeling methods at different scales, including component, cell, stack and system scales Provides exercises in PEMFC modeling, along with examples of necessary codes Covers the latest advances in PEMFCs in a convenient and structured manner Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells


Book Synopsis Water and Thermal Management of Proton Exchange Membrane Fuel Cells by : Kui Jiao

Download or read book Water and Thermal Management of Proton Exchange Membrane Fuel Cells written by Kui Jiao and published by Elsevier. This book was released on 2021-06-05 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. Introduces the transport mechanism for each component of PEMFCs Presents modeling methods at different scales, including component, cell, stack and system scales Provides exercises in PEMFC modeling, along with examples of necessary codes Covers the latest advances in PEMFCs in a convenient and structured manner Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells


Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane Fuel Cells

Author: David P. Wilkinson

Publisher: CRC Press

Published: 2009-11-24

Total Pages: 462

ISBN-13: 1439806667

DOWNLOAD EBOOK

A Detailed, Up-to-Date Treatment of Key Developments in PEMFC MaterialsThe potential to revolutionize the way we power our worldBecause of its lower temperature and special polymer electrolyte membrane, the proton exchange membrane fuel cell (PEMFC) is well-suited for transportation, portable, and micro fuel cell applications. But the performance o


Book Synopsis Proton Exchange Membrane Fuel Cells by : David P. Wilkinson

Download or read book Proton Exchange Membrane Fuel Cells written by David P. Wilkinson and published by CRC Press. This book was released on 2009-11-24 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Detailed, Up-to-Date Treatment of Key Developments in PEMFC MaterialsThe potential to revolutionize the way we power our worldBecause of its lower temperature and special polymer electrolyte membrane, the proton exchange membrane fuel cell (PEMFC) is well-suited for transportation, portable, and micro fuel cell applications. But the performance o


PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers

Author: Jiujun Zhang

Publisher: Springer Science & Business Media

Published: 2008-08-26

Total Pages: 1147

ISBN-13: 1848009364

DOWNLOAD EBOOK

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.


Book Synopsis PEM Fuel Cell Electrocatalysts and Catalyst Layers by : Jiujun Zhang

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.


Proton Exchange Membrane Fuel Cell Modeling and Simulation Using Ansys Fluent

Proton Exchange Membrane Fuel Cell Modeling and Simulation Using Ansys Fluent

Author: Adam Arvay

Publisher:

Published: 2011

Total Pages: 88

ISBN-13:

DOWNLOAD EBOOK

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.


Book Synopsis Proton Exchange Membrane Fuel Cell Modeling and Simulation Using Ansys Fluent by : Adam Arvay

Download or read book Proton Exchange Membrane Fuel Cell Modeling and Simulation Using Ansys Fluent written by Adam Arvay and published by . This book was released on 2011 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.


PEM Fuel Cells

PEM Fuel Cells

Author: Frano Barbir

Publisher: Academic Press

Published: 2012-09-25

Total Pages: 537

ISBN-13: 0123877105

DOWNLOAD EBOOK

Demand for fuel cell technology is growing rapidly. Fuel cells are being commercialized to provide power to buildings like hospitals and schools, to replace batteries in portable electronic devices, and as replacements for internal combustion engines in vehicles. PEM (Proton Exchange Membrane) fuel cells are lighter, smaller, and more efficient than other types of fuel cell. As a result, over 80% of fuel cells being produced today are PEM cells. This new edition of Dr. Barbir's groundbreaking book still lays the groundwork for engineers, technicians and students better than any other resource, covering fundamentals of design, electrochemistry, heat and mass transport, as well as providing the context of system design and applications. Yet it now also provides invaluable information on the latest advances in modeling, diagnostics, materials, and components, along with an updated chapter on the evolving applications areas wherein PEM cells are being deployed. Comprehensive guide covers all aspects of PEM fuel cells, from theory and fundamentals to practical applications Provides solutions to heat and water management problems engineers must face when designing and implementing PEM fuel cells in systems Hundreds of original illustrations, real-life engineering examples, and end-of-chapter problems help clarify, contextualize, and aid understanding


Book Synopsis PEM Fuel Cells by : Frano Barbir

Download or read book PEM Fuel Cells written by Frano Barbir and published by Academic Press. This book was released on 2012-09-25 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demand for fuel cell technology is growing rapidly. Fuel cells are being commercialized to provide power to buildings like hospitals and schools, to replace batteries in portable electronic devices, and as replacements for internal combustion engines in vehicles. PEM (Proton Exchange Membrane) fuel cells are lighter, smaller, and more efficient than other types of fuel cell. As a result, over 80% of fuel cells being produced today are PEM cells. This new edition of Dr. Barbir's groundbreaking book still lays the groundwork for engineers, technicians and students better than any other resource, covering fundamentals of design, electrochemistry, heat and mass transport, as well as providing the context of system design and applications. Yet it now also provides invaluable information on the latest advances in modeling, diagnostics, materials, and components, along with an updated chapter on the evolving applications areas wherein PEM cells are being deployed. Comprehensive guide covers all aspects of PEM fuel cells, from theory and fundamentals to practical applications Provides solutions to heat and water management problems engineers must face when designing and implementing PEM fuel cells in systems Hundreds of original illustrations, real-life engineering examples, and end-of-chapter problems help clarify, contextualize, and aid understanding