Quantum Computing with Silq Programming

Quantum Computing with Silq Programming

Author: Srinjoy Ganguly

Publisher: Packt Publishing Ltd

Published: 2021-04-30

Total Pages: 310

ISBN-13: 1800561210

DOWNLOAD EBOOK

Learn the mathematics behind quantum computing and explore the high-level quantum language Silq to take your quantum programming skills to the next level Key FeaturesHarness the potential of quantum computers more effectively using SilqLearn how to solve core problems that you may face while writing quantum programsExplore useful quantum applications such as cryptography and quantum machine learningBook Description Quantum computing is a growing field, with many research projects focusing on programming quantum computers in the most efficient way possible. One of the biggest challenges faced with existing languages is that they work on low-level circuit model details and are not able to represent quantum programs accurately. Developed by researchers at ETH Zurich after analyzing languages including Q# and Qiskit, Silq is a high-level programming language that can be viewed as the C++ of quantum computers! Quantum Computing with Silq Programming helps you explore Silq and its intuitive and simple syntax to enable you to describe complex tasks with less code. This book will help you get to grips with the constructs of the Silq and show you how to write quantum programs with it. You’ll learn how to use Silq to program quantum algorithms to solve existing and complex tasks. Using quantum algorithms, you’ll also gain practical experience in useful applications such as quantum error correction, cryptography, and quantum machine learning. Finally, you’ll discover how to optimize the programming of quantum computers with the simple Silq. By the end of this Silq book, you’ll have mastered the features of Silq and be able to build efficient quantum applications independently. What you will learnIdentify the challenges that researchers face in quantum programmingUnderstand quantum computing concepts and learn how to make quantum circuitsExplore Silq programming constructs and use them to create quantum programsUse Silq to code quantum algorithms such as Grover's and Simon’sDiscover the practicalities of quantum error correction with SilqExplore useful applications such as quantum machine learning in a practical wayWho this book is for This Silq quantum computing book is for students, researchers, and scientists looking to learn quantum computing techniques and software development. Quantum computing enthusiasts who want to explore this futuristic technology will also find this book useful. Beginner-level knowledge of any programming language as well as mathematical topics such as linear algebra, probability, complex numbers, and statistics is required.


Book Synopsis Quantum Computing with Silq Programming by : Srinjoy Ganguly

Download or read book Quantum Computing with Silq Programming written by Srinjoy Ganguly and published by Packt Publishing Ltd. This book was released on 2021-04-30 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the mathematics behind quantum computing and explore the high-level quantum language Silq to take your quantum programming skills to the next level Key FeaturesHarness the potential of quantum computers more effectively using SilqLearn how to solve core problems that you may face while writing quantum programsExplore useful quantum applications such as cryptography and quantum machine learningBook Description Quantum computing is a growing field, with many research projects focusing on programming quantum computers in the most efficient way possible. One of the biggest challenges faced with existing languages is that they work on low-level circuit model details and are not able to represent quantum programs accurately. Developed by researchers at ETH Zurich after analyzing languages including Q# and Qiskit, Silq is a high-level programming language that can be viewed as the C++ of quantum computers! Quantum Computing with Silq Programming helps you explore Silq and its intuitive and simple syntax to enable you to describe complex tasks with less code. This book will help you get to grips with the constructs of the Silq and show you how to write quantum programs with it. You’ll learn how to use Silq to program quantum algorithms to solve existing and complex tasks. Using quantum algorithms, you’ll also gain practical experience in useful applications such as quantum error correction, cryptography, and quantum machine learning. Finally, you’ll discover how to optimize the programming of quantum computers with the simple Silq. By the end of this Silq book, you’ll have mastered the features of Silq and be able to build efficient quantum applications independently. What you will learnIdentify the challenges that researchers face in quantum programmingUnderstand quantum computing concepts and learn how to make quantum circuitsExplore Silq programming constructs and use them to create quantum programsUse Silq to code quantum algorithms such as Grover's and Simon’sDiscover the practicalities of quantum error correction with SilqExplore useful applications such as quantum machine learning in a practical wayWho this book is for This Silq quantum computing book is for students, researchers, and scientists looking to learn quantum computing techniques and software development. Quantum computing enthusiasts who want to explore this futuristic technology will also find this book useful. Beginner-level knowledge of any programming language as well as mathematical topics such as linear algebra, probability, complex numbers, and statistics is required.


Foundations of Quantum Programming

Foundations of Quantum Programming

Author: Mingsheng Ying

Publisher: Elsevier

Published: 2024-05-01

Total Pages: 474

ISBN-13: 0443159432

DOWNLOAD EBOOK

Quantum computers promise dramatic advantages in processing speed over currently available computer systems. Quantum computing offers great promise in a wide variety of computing and scientific research, including Quantum cryptography, machine learning, computational biology, renewable energy, computer-aided drug design, generative chemistry, and any scientific or enterprise application that requires computation speed or reach beyond the limits of current conventional computer systems. Foundations of Quantum Programming, Second Edition discusses how programming methodologies and technologies developed for current computers can be extended for quantum computers, along with new programming methodologies and technologies that can effectively exploit the unique power of quantum computing. The Second Edition includes two new chapters describing programming models and methodologies for parallel and distributed quantum computers. The author has also included two new chapters to introduce Quantum Machine Learning and its programming models – parameterized and differential quantum programming. In addition, the First Edition's preliminaries chapter has been split into three chapters, with two sections for quantum Turing machines and random access stored program machines added to give the reader a more complete picture of quantum computational models. Finally, several other new techniques are introduced in the Second Edition, including invariants of quantum programs and their generation algorithms, and abstract interpretation of quantum programs. Demystifies the theory of quantum programming using a step-by-step approach Includes methodologies, techniques, and tools for the development, analysis, and verification of quantum programs and quantum cryptographic protocols Covers the interdisciplinary nature of quantum programming by providing preliminaries from quantum mechanics, mathematics, and computer science, and pointing out its potential applications to quantum engineering and physics Presents a coherent and self-contained treatment that will be valuable for academic and industrial researchers and developers Adds new developments such as parallel and distributed quantum programming; and introduces several new program analysis techniques such as invariants generation and abstract interpretation


Book Synopsis Foundations of Quantum Programming by : Mingsheng Ying

Download or read book Foundations of Quantum Programming written by Mingsheng Ying and published by Elsevier. This book was released on 2024-05-01 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers promise dramatic advantages in processing speed over currently available computer systems. Quantum computing offers great promise in a wide variety of computing and scientific research, including Quantum cryptography, machine learning, computational biology, renewable energy, computer-aided drug design, generative chemistry, and any scientific or enterprise application that requires computation speed or reach beyond the limits of current conventional computer systems. Foundations of Quantum Programming, Second Edition discusses how programming methodologies and technologies developed for current computers can be extended for quantum computers, along with new programming methodologies and technologies that can effectively exploit the unique power of quantum computing. The Second Edition includes two new chapters describing programming models and methodologies for parallel and distributed quantum computers. The author has also included two new chapters to introduce Quantum Machine Learning and its programming models – parameterized and differential quantum programming. In addition, the First Edition's preliminaries chapter has been split into three chapters, with two sections for quantum Turing machines and random access stored program machines added to give the reader a more complete picture of quantum computational models. Finally, several other new techniques are introduced in the Second Edition, including invariants of quantum programs and their generation algorithms, and abstract interpretation of quantum programs. Demystifies the theory of quantum programming using a step-by-step approach Includes methodologies, techniques, and tools for the development, analysis, and verification of quantum programs and quantum cryptographic protocols Covers the interdisciplinary nature of quantum programming by providing preliminaries from quantum mechanics, mathematics, and computer science, and pointing out its potential applications to quantum engineering and physics Presents a coherent and self-contained treatment that will be valuable for academic and industrial researchers and developers Adds new developments such as parallel and distributed quantum programming; and introduces several new program analysis techniques such as invariants generation and abstract interpretation


High-level Structures for Quantum Computing

High-level Structures for Quantum Computing

Author: Jarosław Adam Miszczak

Publisher: Morgan & Claypool Publishers

Published: 2012

Total Pages: 132

ISBN-13: 1608458512

DOWNLOAD EBOOK

This book is concerned with the models of quantum computation. Information processing based on the rules of quantum mechanics provides us with new opportunities for developing more efficient algorithms and protocols. However, to harness the power offered by quantum information processing it is essential to control the behavior of quantum mechanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum states and unitary gates, high-level quantum programming languages have been proposed for this purpose. The aim of this book is to provide an introduction to abstract models of computation used in quantum information theory. Starting from the abstract models of Turing machine and finite automata, we introduce the models of Boolean circuits and Random Access Machine and use them to present quantum programming techniques and quantum programming languages. Table of Contents: Introduction / Turing machines / Quantum Finite State Automata / Computational Circuits / Random Access Machines / Quantum Programming Environment / Quantum Programming Languages / Imperative quantum programming / Functional Quantum Programming / Outlook


Book Synopsis High-level Structures for Quantum Computing by : Jarosław Adam Miszczak

Download or read book High-level Structures for Quantum Computing written by Jarosław Adam Miszczak and published by Morgan & Claypool Publishers. This book was released on 2012 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the models of quantum computation. Information processing based on the rules of quantum mechanics provides us with new opportunities for developing more efficient algorithms and protocols. However, to harness the power offered by quantum information processing it is essential to control the behavior of quantum mechanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum states and unitary gates, high-level quantum programming languages have been proposed for this purpose. The aim of this book is to provide an introduction to abstract models of computation used in quantum information theory. Starting from the abstract models of Turing machine and finite automata, we introduce the models of Boolean circuits and Random Access Machine and use them to present quantum programming techniques and quantum programming languages. Table of Contents: Introduction / Turing machines / Quantum Finite State Automata / Computational Circuits / Random Access Machines / Quantum Programming Environment / Quantum Programming Languages / Imperative quantum programming / Functional Quantum Programming / Outlook


Dancing with Qubits

Dancing with Qubits

Author: Robert S. Sutor

Publisher: Packt Publishing Ltd

Published: 2019-11-28

Total Pages: 515

ISBN-13: 1838825258

DOWNLOAD EBOOK

Explore the principles and practicalities of quantum computing Key Features Discover how quantum computing works and delve into the math behind it with this quantum computing textbook Learn how it may become the most important new computer technology of the century Explore the inner workings of quantum computing technology to quickly process complex cloud data and solve problems Book DescriptionQuantum computing is making us change the way we think about computers. Quantum bits, a.k.a. qubits, can make it possible to solve problems that would otherwise be intractable with current computing technology. Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you. Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples.What you will learn See how quantum computing works, delve into the math behind it, what makes it different, and why it is so powerful with this quantum computing textbook Discover the complex, mind-bending mechanics that underpin quantum systems Understand the necessary concepts behind classical and quantum computing Refresh and extend your grasp of essential mathematics, computing, and quantum theory Explore the main applications of quantum computing to the fields of scientific computing, AI, and elsewhere Examine a detailed overview of qubits, quantum circuits, and quantum algorithm Who this book is for Dancing with Qubits is a quantum computing textbook for those who want to deeply explore the inner workings of quantum computing. This entails some sophisticated mathematical exposition and is therefore best suited for those with a healthy interest in mathematics, physics, engineering, and computer science.


Book Synopsis Dancing with Qubits by : Robert S. Sutor

Download or read book Dancing with Qubits written by Robert S. Sutor and published by Packt Publishing Ltd. This book was released on 2019-11-28 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the principles and practicalities of quantum computing Key Features Discover how quantum computing works and delve into the math behind it with this quantum computing textbook Learn how it may become the most important new computer technology of the century Explore the inner workings of quantum computing technology to quickly process complex cloud data and solve problems Book DescriptionQuantum computing is making us change the way we think about computers. Quantum bits, a.k.a. qubits, can make it possible to solve problems that would otherwise be intractable with current computing technology. Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you. Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples.What you will learn See how quantum computing works, delve into the math behind it, what makes it different, and why it is so powerful with this quantum computing textbook Discover the complex, mind-bending mechanics that underpin quantum systems Understand the necessary concepts behind classical and quantum computing Refresh and extend your grasp of essential mathematics, computing, and quantum theory Explore the main applications of quantum computing to the fields of scientific computing, AI, and elsewhere Examine a detailed overview of qubits, quantum circuits, and quantum algorithm Who this book is for Dancing with Qubits is a quantum computing textbook for those who want to deeply explore the inner workings of quantum computing. This entails some sophisticated mathematical exposition and is therefore best suited for those with a healthy interest in mathematics, physics, engineering, and computer science.


Quantum Computer Science

Quantum Computer Science

Author: Marco Lanzagorta

Publisher: Morgan & Claypool Publishers

Published: 2009

Total Pages: 125

ISBN-13: 1598297325

DOWNLOAD EBOOK

In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distinguishing feature of this text is our detailed discussion of the circuit complexity of quantum algorithms. To the extent possible we have presented the material in a form that is accessible to the computer scientist, but in many cases we retain the conventional physics notation so that the reader will also be able to consult the relevant quantum computing literature. Although we expect the reader to have a solid understanding of linear algebra, we do not assume a background in physics. This text is based on lectures given as short courses and invited presentations around the world, and it has been used as the primary text for a graduate course at George Mason University. In all these cases our challenge has been the same: how to present to a general audience a concise introduction to the algorithmic structure and applications of quantum computing on an extremely short period of time. The feedback from these courses and presentations has greatly aided in making our exposition of challenging concepts more accessible to a general audience. Table of Contents: Introduction / The Algorithmic Structure of Quantum Computing / Advantages and Limitations of Quantum Computing / Amplitude Amplification / Case Study: Computational Geometry / The Quantum Fourier Transform / Case Study: The Hidden Subgroup / Circuit Complexity Analysis of Quantum Algorithms / Conclusions / Bibliography


Book Synopsis Quantum Computer Science by : Marco Lanzagorta

Download or read book Quantum Computer Science written by Marco Lanzagorta and published by Morgan & Claypool Publishers. This book was released on 2009 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distinguishing feature of this text is our detailed discussion of the circuit complexity of quantum algorithms. To the extent possible we have presented the material in a form that is accessible to the computer scientist, but in many cases we retain the conventional physics notation so that the reader will also be able to consult the relevant quantum computing literature. Although we expect the reader to have a solid understanding of linear algebra, we do not assume a background in physics. This text is based on lectures given as short courses and invited presentations around the world, and it has been used as the primary text for a graduate course at George Mason University. In all these cases our challenge has been the same: how to present to a general audience a concise introduction to the algorithmic structure and applications of quantum computing on an extremely short period of time. The feedback from these courses and presentations has greatly aided in making our exposition of challenging concepts more accessible to a general audience. Table of Contents: Introduction / The Algorithmic Structure of Quantum Computing / Advantages and Limitations of Quantum Computing / Amplitude Amplification / Case Study: Computational Geometry / The Quantum Fourier Transform / Case Study: The Hidden Subgroup / Circuit Complexity Analysis of Quantum Algorithms / Conclusions / Bibliography


Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

Author: Hassi Norlén

Publisher: Packt Publishing Ltd

Published: 2020-11-23

Total Pages: 409

ISBN-13: 1838821031

DOWNLOAD EBOOK

Understand the nuances of programming traditional quantum computers and solve the challenges of the future while building and executing quantum programs on IBM Quantum hardware and simulators Key FeaturesWork your way up from writing a simple quantum program to programming complex quantum algorithmsExplore the probabilistic nature of qubits by performing quantum coin tosses and using random number generatorsDelve into quantum algorithms and their practical applications in various domainsBook Description IBM Quantum Experience® is a leading platform for programming quantum computers and implementing quantum solutions directly on the cloud. This book will help you get up to speed with programming quantum computers and provide solutions to the most common problems and challenges. You’ll start with a high-level overview of IBM Quantum Experience® and Qiskit®, where you will perform the installation while writing some basic quantum programs. This introduction puts less emphasis on the theoretical framework and more emphasis on recent developments such as Shor’s algorithm and Grover’s algorithm. Next, you’ll delve into Qiskit®, a quantum information science toolkit, and its constituent packages such as Terra, Aer, Ignis, and Aqua. You’ll cover these packages in detail, exploring their benefits and use cases. Later, you’ll discover various quantum gates that Qiskit® offers and even deconstruct a quantum program with their help, before going on to compare Noisy Intermediate-Scale Quantum (NISQ) and Universal Fault-Tolerant quantum computing using simulators and actual hardware. Finally, you’ll explore quantum algorithms and understand how they differ from classical algorithms, along with learning how to use pre-packaged algorithms in Qiskit® Aqua. By the end of this quantum computing book, you’ll be able to build and execute your own quantum programs using IBM Quantum Experience® and Qiskit® with Python. What you will learnVisualize a qubit in Python and understand the concept of superpositionInstall a local Qiskit® simulator and connect to actual quantum hardwareCompose quantum programs at the level of circuits using Qiskit® TerraCompare and contrast Noisy Intermediate-Scale Quantum computing (NISQ) and Universal Fault-Tolerant quantum computing using simulators and IBM Quantum® hardwareMitigate noise in quantum circuits and systems using Qiskit® IgnisUnderstand the difference between classical and quantum algorithms by implementing Grover’s algorithm in Qiskit®Who this book is for This book is for developers, data scientists, machine learning researchers, or quantum computing enthusiasts who want to understand how to use IBM Quantum Experience® and Qiskit® to implement quantum solutions and gain practical quantum computing experience. Python programming experience is a must to grasp the concepts covered in the book more effectively. Basic knowledge of quantum computing will also be beneficial.


Book Synopsis Quantum Computing in Practice with Qiskit® and IBM Quantum Experience® by : Hassi Norlén

Download or read book Quantum Computing in Practice with Qiskit® and IBM Quantum Experience® written by Hassi Norlén and published by Packt Publishing Ltd. This book was released on 2020-11-23 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the nuances of programming traditional quantum computers and solve the challenges of the future while building and executing quantum programs on IBM Quantum hardware and simulators Key FeaturesWork your way up from writing a simple quantum program to programming complex quantum algorithmsExplore the probabilistic nature of qubits by performing quantum coin tosses and using random number generatorsDelve into quantum algorithms and their practical applications in various domainsBook Description IBM Quantum Experience® is a leading platform for programming quantum computers and implementing quantum solutions directly on the cloud. This book will help you get up to speed with programming quantum computers and provide solutions to the most common problems and challenges. You’ll start with a high-level overview of IBM Quantum Experience® and Qiskit®, where you will perform the installation while writing some basic quantum programs. This introduction puts less emphasis on the theoretical framework and more emphasis on recent developments such as Shor’s algorithm and Grover’s algorithm. Next, you’ll delve into Qiskit®, a quantum information science toolkit, and its constituent packages such as Terra, Aer, Ignis, and Aqua. You’ll cover these packages in detail, exploring their benefits and use cases. Later, you’ll discover various quantum gates that Qiskit® offers and even deconstruct a quantum program with their help, before going on to compare Noisy Intermediate-Scale Quantum (NISQ) and Universal Fault-Tolerant quantum computing using simulators and actual hardware. Finally, you’ll explore quantum algorithms and understand how they differ from classical algorithms, along with learning how to use pre-packaged algorithms in Qiskit® Aqua. By the end of this quantum computing book, you’ll be able to build and execute your own quantum programs using IBM Quantum Experience® and Qiskit® with Python. What you will learnVisualize a qubit in Python and understand the concept of superpositionInstall a local Qiskit® simulator and connect to actual quantum hardwareCompose quantum programs at the level of circuits using Qiskit® TerraCompare and contrast Noisy Intermediate-Scale Quantum computing (NISQ) and Universal Fault-Tolerant quantum computing using simulators and IBM Quantum® hardwareMitigate noise in quantum circuits and systems using Qiskit® IgnisUnderstand the difference between classical and quantum algorithms by implementing Grover’s algorithm in Qiskit®Who this book is for This book is for developers, data scientists, machine learning researchers, or quantum computing enthusiasts who want to understand how to use IBM Quantum Experience® and Qiskit® to implement quantum solutions and gain practical quantum computing experience. Python programming experience is a must to grasp the concepts covered in the book more effectively. Basic knowledge of quantum computing will also be beneficial.


Hardware Security

Hardware Security

Author: Swarup Bhunia

Publisher: Morgan Kaufmann

Published: 2018-10-30

Total Pages: 526

ISBN-13: 0128124784

DOWNLOAD EBOOK

Hardware Security: A Hands-On Learning Approach provides a broad, comprehensive and practical overview of hardware security that encompasses all levels of the electronic hardware infrastructure. It covers basic concepts like advanced attack techniques and countermeasures that are illustrated through theory, case studies and well-designed, hands-on laboratory exercises for each key concept. The book is ideal as a textbook for upper-level undergraduate students studying computer engineering, computer science, electrical engineering, and biomedical engineering, but is also a handy reference for graduate students, researchers and industry professionals. For academic courses, the book contains a robust suite of teaching ancillaries. Users will be able to access schematic, layout and design files for a printed circuit board for hardware hacking (i.e. the HaHa board) that can be used by instructors to fabricate boards, a suite of videos that demonstrate different hardware vulnerabilities, hardware attacks and countermeasures, and a detailed description and user manual for companion materials. Provides a thorough overview of computer hardware, including the fundamentals of computer systems and the implications of security risks Includes discussion of the liability, safety and privacy implications of hardware and software security and interaction Gives insights on a wide range of security, trust issues and emerging attacks and protection mechanisms in the electronic hardware lifecycle, from design, fabrication, test, and distribution, straight through to supply chain and deployment in the field


Book Synopsis Hardware Security by : Swarup Bhunia

Download or read book Hardware Security written by Swarup Bhunia and published by Morgan Kaufmann. This book was released on 2018-10-30 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardware Security: A Hands-On Learning Approach provides a broad, comprehensive and practical overview of hardware security that encompasses all levels of the electronic hardware infrastructure. It covers basic concepts like advanced attack techniques and countermeasures that are illustrated through theory, case studies and well-designed, hands-on laboratory exercises for each key concept. The book is ideal as a textbook for upper-level undergraduate students studying computer engineering, computer science, electrical engineering, and biomedical engineering, but is also a handy reference for graduate students, researchers and industry professionals. For academic courses, the book contains a robust suite of teaching ancillaries. Users will be able to access schematic, layout and design files for a printed circuit board for hardware hacking (i.e. the HaHa board) that can be used by instructors to fabricate boards, a suite of videos that demonstrate different hardware vulnerabilities, hardware attacks and countermeasures, and a detailed description and user manual for companion materials. Provides a thorough overview of computer hardware, including the fundamentals of computer systems and the implications of security risks Includes discussion of the liability, safety and privacy implications of hardware and software security and interaction Gives insights on a wide range of security, trust issues and emerging attacks and protection mechanisms in the electronic hardware lifecycle, from design, fabrication, test, and distribution, straight through to supply chain and deployment in the field


Fundamentals of Quantum Programming in IBM's Quantum Computers

Fundamentals of Quantum Programming in IBM's Quantum Computers

Author: Weng-Long Chang

Publisher: Springer Nature

Published: 2020-12-21

Total Pages: 354

ISBN-13: 303063583X

DOWNLOAD EBOOK

This textbook introduces major topics that include quantum bits, superposition, entanglement, logic gates, quantum search algorithm, quantum Fourier transform, inverse quantum Fourier transform, Shor’s order-finding algorithm and phase estimation. Everyone can write algorithms and programs in the cloud making using IBM’s quantum computers that support IBM Q Experience which contains the composer, open quantum assembly language, simulators and real quantum devices. Furthermore, this book teaches you how to use open quantum assembly language to write quantum programs for dealing with complex problems. Through numerous examples and exercises, readers will learn how to write a quantum program with open quantum assembly language for solving any problem from start to complete. This book includes six main chapters: ·Quantum Bits and Quantum Gates—learn what quantum bits are, how to declare and measure them, what quantum gates are and how they work on a simulator or a real device in the cloud. ·Boolean Algebra and its Applications—learn how to decompose CCNOT gate into six CNOT gates and nine gates of one bit and how to use NOT gates, CNOT gates and CCNOT gates to implement logic operations including NOT, OR, AND, NOR, NAND, Exclusive-OR (XOR) and Exclusive-NOR (XNOR). ·Quantum Search Algorithm and its Applications—learn core concepts of quantum search algorithm and how to write quantum programs to implement core concepts of quantum search algorithm for solving two famous NP-complete problems that are the satisfiability problem in n Boolean variables and m clauses and the clique problem in a graph with n vertices and q edges. ·Quantum Fourier Transform and its Applications—learn core concepts of quantum Fourier transform and inverse quantum Fourier transform and how to write quantum programs to implement them for solving two real applications that are to compute the period and the frequency of two given oracular functions. ·Order-Finding and Factoring—learn core concepts of Shor’s order-finding algorithm and how to write quantum programs to implement Shor’s order-finding algorithm for completing the prime factorization to 15. Phase Estimation and its Applications—learn core concepts of phase estimation and quantum counting and how to write quantum programs to implement them to compute the number of solution(s) in the independent set problem in a graph with two vertices and one edge.


Book Synopsis Fundamentals of Quantum Programming in IBM's Quantum Computers by : Weng-Long Chang

Download or read book Fundamentals of Quantum Programming in IBM's Quantum Computers written by Weng-Long Chang and published by Springer Nature. This book was released on 2020-12-21 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces major topics that include quantum bits, superposition, entanglement, logic gates, quantum search algorithm, quantum Fourier transform, inverse quantum Fourier transform, Shor’s order-finding algorithm and phase estimation. Everyone can write algorithms and programs in the cloud making using IBM’s quantum computers that support IBM Q Experience which contains the composer, open quantum assembly language, simulators and real quantum devices. Furthermore, this book teaches you how to use open quantum assembly language to write quantum programs for dealing with complex problems. Through numerous examples and exercises, readers will learn how to write a quantum program with open quantum assembly language for solving any problem from start to complete. This book includes six main chapters: ·Quantum Bits and Quantum Gates—learn what quantum bits are, how to declare and measure them, what quantum gates are and how they work on a simulator or a real device in the cloud. ·Boolean Algebra and its Applications—learn how to decompose CCNOT gate into six CNOT gates and nine gates of one bit and how to use NOT gates, CNOT gates and CCNOT gates to implement logic operations including NOT, OR, AND, NOR, NAND, Exclusive-OR (XOR) and Exclusive-NOR (XNOR). ·Quantum Search Algorithm and its Applications—learn core concepts of quantum search algorithm and how to write quantum programs to implement core concepts of quantum search algorithm for solving two famous NP-complete problems that are the satisfiability problem in n Boolean variables and m clauses and the clique problem in a graph with n vertices and q edges. ·Quantum Fourier Transform and its Applications—learn core concepts of quantum Fourier transform and inverse quantum Fourier transform and how to write quantum programs to implement them for solving two real applications that are to compute the period and the frequency of two given oracular functions. ·Order-Finding and Factoring—learn core concepts of Shor’s order-finding algorithm and how to write quantum programs to implement Shor’s order-finding algorithm for completing the prime factorization to 15. Phase Estimation and its Applications—learn core concepts of phase estimation and quantum counting and how to write quantum programs to implement them to compute the number of solution(s) in the independent set problem in a graph with two vertices and one edge.


Supervised Learning with Quantum Computers

Supervised Learning with Quantum Computers

Author: Maria Schuld

Publisher: Springer

Published: 2018-08-30

Total Pages: 293

ISBN-13: 3319964240

DOWNLOAD EBOOK

Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.


Book Synopsis Supervised Learning with Quantum Computers by : Maria Schuld

Download or read book Supervised Learning with Quantum Computers written by Maria Schuld and published by Springer. This book was released on 2018-08-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.


Introducing Microsoft Quantum Computing for Developers

Introducing Microsoft Quantum Computing for Developers

Author: Johnny Hooyberghs

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9781484284162

DOWNLOAD EBOOK

Dive in with this hands-on introduction to quantum computing with the Microsoft Quantum Development Kit and Q# for software developers. You may have heard about quantum computing, but what does it mean to you as a software developer? With many new developments, a resurgence in interest, and investment by some of the largest tech companies in the world to be the first to market with quantum programming (QP) hardware and platforms, it is no longer a tool in the distant future. Developers are at the forefront, now able to create applications that take advantage of QP through simulations. While the skill is of interest, for many developers, quantum computing and its implications still remains a mystery. In this book, you will get up to speed exploring important quantum concepts and apply them in practice through writing actual quantum algorithms, using the Microsoft Quantum Development Kit. Theoretical knowledge about quantum physics, such as superposition and entanglement, will be used to explain quantum computing topics, including quantum gates, quantum circuits, and quantum algorithms. Finally, take a tour of the new Azure Quantum. Use Q#, Microsoft's new programming language, to target quantum hardware. You will select your supporting language of choice, either C# or Python, to begin writing your quantum applications. Combined with just enough theoretical preparation, you will learn how to get your computer ready to simulate basic quantum programs using Microsoft Visual Studio or Visual Studio Code and Q#. What You Will Learn Get up to speed on the platform-independent quantum tool set using the Microsoft Quantum Development Kit simulator and Visual Studio Code or Microsoft Visual Studio Know the basics of quantum mechanics required to start working on quantum computing Understand mathematical concepts such as complex numbers, trigonometry, and linear algebra Install the Microsoft Quantum Development Kit on a Windows or Linux PC with Visual Studio Code or Microsoft Visual Studio Write quantum algorithms with the Microsoft Quantum Development Kit and Q#, supported by C# or Python Discover insights on important existing quantum algorithms such as Deutch, Deutch-Jozsa, and the fun CHSH-game Get introduced to quantum as a service using the Microsoft Azure Quantum preview cloud offering This book is for developers who are interested in quantum computing, specifically those software developers who are planning on using quantum computers in the future. Basic imperative programming knowledge is useful to understand the syntax and structure found in the Q# programming language. Knowledge of Microsoft C# or Python is not required since these languages are only used to support the simulation of Q# on a classical computer. Johnny Hooyberghs is a consultant for Involved, a Belgium-based company centered on the design, development, and delivery of custom made software, where his expertise has been on .NET architecture and backend development. Since 2020, Johnny is a Microsoft Most Valuable Professional (MVP) in the category of Developer Technologies. He has been passionate about .NET from its first release and possesses a deep knowledge of C#, .NET, .NET Core, ASP.NET, Entity Framework, Azure, and ALM using the Microsoft Stack. He enjoys the occasional web development using JavaScript. For more than a decade, he has allocated a portion of his free time to teaching .NET and C# for the adult education institute CVO Antwerpen. When he is not working or teaching, he can be found gaming, scuba diving, learning to play the piano, traveling the world, and visiting as many theme parks as possible.


Book Synopsis Introducing Microsoft Quantum Computing for Developers by : Johnny Hooyberghs

Download or read book Introducing Microsoft Quantum Computing for Developers written by Johnny Hooyberghs and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive in with this hands-on introduction to quantum computing with the Microsoft Quantum Development Kit and Q# for software developers. You may have heard about quantum computing, but what does it mean to you as a software developer? With many new developments, a resurgence in interest, and investment by some of the largest tech companies in the world to be the first to market with quantum programming (QP) hardware and platforms, it is no longer a tool in the distant future. Developers are at the forefront, now able to create applications that take advantage of QP through simulations. While the skill is of interest, for many developers, quantum computing and its implications still remains a mystery. In this book, you will get up to speed exploring important quantum concepts and apply them in practice through writing actual quantum algorithms, using the Microsoft Quantum Development Kit. Theoretical knowledge about quantum physics, such as superposition and entanglement, will be used to explain quantum computing topics, including quantum gates, quantum circuits, and quantum algorithms. Finally, take a tour of the new Azure Quantum. Use Q#, Microsoft's new programming language, to target quantum hardware. You will select your supporting language of choice, either C# or Python, to begin writing your quantum applications. Combined with just enough theoretical preparation, you will learn how to get your computer ready to simulate basic quantum programs using Microsoft Visual Studio or Visual Studio Code and Q#. What You Will Learn Get up to speed on the platform-independent quantum tool set using the Microsoft Quantum Development Kit simulator and Visual Studio Code or Microsoft Visual Studio Know the basics of quantum mechanics required to start working on quantum computing Understand mathematical concepts such as complex numbers, trigonometry, and linear algebra Install the Microsoft Quantum Development Kit on a Windows or Linux PC with Visual Studio Code or Microsoft Visual Studio Write quantum algorithms with the Microsoft Quantum Development Kit and Q#, supported by C# or Python Discover insights on important existing quantum algorithms such as Deutch, Deutch-Jozsa, and the fun CHSH-game Get introduced to quantum as a service using the Microsoft Azure Quantum preview cloud offering This book is for developers who are interested in quantum computing, specifically those software developers who are planning on using quantum computers in the future. Basic imperative programming knowledge is useful to understand the syntax and structure found in the Q# programming language. Knowledge of Microsoft C# or Python is not required since these languages are only used to support the simulation of Q# on a classical computer. Johnny Hooyberghs is a consultant for Involved, a Belgium-based company centered on the design, development, and delivery of custom made software, where his expertise has been on .NET architecture and backend development. Since 2020, Johnny is a Microsoft Most Valuable Professional (MVP) in the category of Developer Technologies. He has been passionate about .NET from its first release and possesses a deep knowledge of C#, .NET, .NET Core, ASP.NET, Entity Framework, Azure, and ALM using the Microsoft Stack. He enjoys the occasional web development using JavaScript. For more than a decade, he has allocated a portion of his free time to teaching .NET and C# for the adult education institute CVO Antwerpen. When he is not working or teaching, he can be found gaming, scuba diving, learning to play the piano, traveling the world, and visiting as many theme parks as possible.