Quantum Field Theory III: Gauge Theory

Quantum Field Theory III: Gauge Theory

Author: Eberhard Zeidler

Publisher: Springer

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9783662505953

DOWNLOAD EBOOK

In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).


Book Synopsis Quantum Field Theory III: Gauge Theory by : Eberhard Zeidler

Download or read book Quantum Field Theory III: Gauge Theory written by Eberhard Zeidler and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).


Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics

Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics

Author: Erhard Seiler

Publisher: Springer

Published: 1982

Total Pages: 212

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics by : Erhard Seiler

Download or read book Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics written by Erhard Seiler and published by Springer. This book was released on 1982 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Quantum Field Theory III: Gauge Theory

Quantum Field Theory III: Gauge Theory

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

Published: 2011-08-17

Total Pages: 1141

ISBN-13: 3642224210

DOWNLOAD EBOOK

In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).


Book Synopsis Quantum Field Theory III: Gauge Theory by : Eberhard Zeidler

Download or read book Quantum Field Theory III: Gauge Theory written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2011-08-17 with total page 1141 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).


Gauge Field Theories

Gauge Field Theories

Author: Mike Guidry

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 620

ISBN-13: 3527617361

DOWNLOAD EBOOK

Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises.


Book Synopsis Gauge Field Theories by : Mike Guidry

Download or read book Gauge Field Theories written by Mike Guidry and published by John Wiley & Sons. This book was released on 2008-07-11 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises.


Introduction to Gauge Field Theory Revised Edition

Introduction to Gauge Field Theory Revised Edition

Author: D. Bailin

Publisher: CRC Press

Published: 1993-01-01

Total Pages: 390

ISBN-13: 9780750302814

DOWNLOAD EBOOK

Introduction to Gauge Field Theory provides comprehensive coverage of modern relativistic quantum field theory, emphasizing the details of actual calculations rather than the phenomenology of the applications. Forming a foundation in the subject, the book assumes knowledge of relativistic quantum mechanics, but not of quantum field theory. The book is ideal for graduate students, advanced undergraduates, and researchers in the field of particle physics.


Book Synopsis Introduction to Gauge Field Theory Revised Edition by : D. Bailin

Download or read book Introduction to Gauge Field Theory Revised Edition written by D. Bailin and published by CRC Press. This book was released on 1993-01-01 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Gauge Field Theory provides comprehensive coverage of modern relativistic quantum field theory, emphasizing the details of actual calculations rather than the phenomenology of the applications. Forming a foundation in the subject, the book assumes knowledge of relativistic quantum mechanics, but not of quantum field theory. The book is ideal for graduate students, advanced undergraduates, and researchers in the field of particle physics.


Quantum Field Theory I: Basics in Mathematics and Physics

Quantum Field Theory I: Basics in Mathematics and Physics

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

Published: 2007-04-18

Total Pages: 1060

ISBN-13: 354034764X

DOWNLOAD EBOOK

This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.


Book Synopsis Quantum Field Theory I: Basics in Mathematics and Physics by : Eberhard Zeidler

Download or read book Quantum Field Theory I: Basics in Mathematics and Physics written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2007-04-18 with total page 1060 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.


The Biggest Ideas in the Universe

The Biggest Ideas in the Universe

Author: Sean Carroll

Publisher: Penguin

Published: 2022-09-20

Total Pages: 305

ISBN-13: 0593186583

DOWNLOAD EBOOK

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.


Book Synopsis The Biggest Ideas in the Universe by : Sean Carroll

Download or read book The Biggest Ideas in the Universe written by Sean Carroll and published by Penguin. This book was released on 2022-09-20 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.


Classical Theory of Gauge Fields

Classical Theory of Gauge Fields

Author: Valery Rubakov

Publisher: Princeton University Press

Published: 2009-02-09

Total Pages: 456

ISBN-13: 1400825091

DOWNLOAD EBOOK

Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.


Book Synopsis Classical Theory of Gauge Fields by : Valery Rubakov

Download or read book Classical Theory of Gauge Fields written by Valery Rubakov and published by Princeton University Press. This book was released on 2009-02-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.


Gauge Theories in Particle Physics, Volume II

Gauge Theories in Particle Physics, Volume II

Author: I.J.R. Aitchison

Publisher: CRC Press

Published: 2003-12-01

Total Pages: 484

ISBN-13: 9780849387760

DOWNLOAD EBOOK

This is the second volume of the third edition of a successful text, now substantially enlarged and updated to reflect developments over the last decade in the curricula of university courses and in particle physics research. Volume I covered relativistic quantum mechanics, electromagnetism as a gauge theory, and introductory quantum field theory, and ended with the formulation and application of quantum electrodynamics (QED), including renormalization. Building on these foundations, this second volume provides a complete, accessible, and self-contained introduction to the remaining two gauge theories of the standard model of particle physics: quantum chromodynamics (QCD) and the electroweak theory. The treatment significantly extends that of the second edition in several important respects. Simple ideas of group theory are now incorporated into the discussion of non-Abelian symmetries. Two new chapters have been added on QCD, one devoted to the renormalization group and scaling violations in deep inelastic scattering and the other to non-perturbative aspects of QCD using the lattice (path-integral) formulation of quantum field theory; the latter is also used to illuminate various aspects of renormalization theory, via analogies with condensed matter systems. Three chapters treat the fundamental topic of spontaneous symmetry breaking: the (Bogoliubov) superfluid and the (BCS) superconductor are studied in some detail; one chapter is devoted to the implications of global chiral symmetry breaking in QCD; and one to the breaking of local SU(2)xU(1) symmetry in the electroweak theory. Weak interaction phenomenology is extended to include discussion of discrete symmetries and of the possibility that neutrinos are Majorana (rather than Dirac) particles. Most of these topics are normally found only in more advanced texts, and this is the first book to treat them in a manner accessible to the wide readership that the previous editions have attracted.


Book Synopsis Gauge Theories in Particle Physics, Volume II by : I.J.R. Aitchison

Download or read book Gauge Theories in Particle Physics, Volume II written by I.J.R. Aitchison and published by CRC Press. This book was released on 2003-12-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of the third edition of a successful text, now substantially enlarged and updated to reflect developments over the last decade in the curricula of university courses and in particle physics research. Volume I covered relativistic quantum mechanics, electromagnetism as a gauge theory, and introductory quantum field theory, and ended with the formulation and application of quantum electrodynamics (QED), including renormalization. Building on these foundations, this second volume provides a complete, accessible, and self-contained introduction to the remaining two gauge theories of the standard model of particle physics: quantum chromodynamics (QCD) and the electroweak theory. The treatment significantly extends that of the second edition in several important respects. Simple ideas of group theory are now incorporated into the discussion of non-Abelian symmetries. Two new chapters have been added on QCD, one devoted to the renormalization group and scaling violations in deep inelastic scattering and the other to non-perturbative aspects of QCD using the lattice (path-integral) formulation of quantum field theory; the latter is also used to illuminate various aspects of renormalization theory, via analogies with condensed matter systems. Three chapters treat the fundamental topic of spontaneous symmetry breaking: the (Bogoliubov) superfluid and the (BCS) superconductor are studied in some detail; one chapter is devoted to the implications of global chiral symmetry breaking in QCD; and one to the breaking of local SU(2)xU(1) symmetry in the electroweak theory. Weak interaction phenomenology is extended to include discussion of discrete symmetries and of the possibility that neutrinos are Majorana (rather than Dirac) particles. Most of these topics are normally found only in more advanced texts, and this is the first book to treat them in a manner accessible to the wide readership that the previous editions have attracted.


Quantum Field Theory I

Quantum Field Theory I

Author: Edouard B. Manoukian

Publisher: Springer

Published: 2016-12-01

Total Pages: 586

ISBN-13: 3319309390

DOWNLOAD EBOOK

This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents “deep inelastic” experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.


Book Synopsis Quantum Field Theory I by : Edouard B. Manoukian

Download or read book Quantum Field Theory I written by Edouard B. Manoukian and published by Springer. This book was released on 2016-12-01 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents “deep inelastic” experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.