Quantum Nanoelectronics

Quantum Nanoelectronics

Author: Edward L. Wolf

Publisher: John Wiley & Sons

Published: 2015-11-20

Total Pages: 473

ISBN-13: 3527665382

DOWNLOAD EBOOK

A tutorial coverage of electronic technology, starting from the basics of condensed matter and quantum physics. Experienced author Ed Wolf presents established and novel devices like Field Effect and Single Electron Transistors, and leads the reader up to applications in data storage, quantum computing, and energy harvesting. Intended to be self-contained for students with two years of calculus-based college physics, with corresponding fundamental knowledge in mathematics, computing and chemistry.


Book Synopsis Quantum Nanoelectronics by : Edward L. Wolf

Download or read book Quantum Nanoelectronics written by Edward L. Wolf and published by John Wiley & Sons. This book was released on 2015-11-20 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: A tutorial coverage of electronic technology, starting from the basics of condensed matter and quantum physics. Experienced author Ed Wolf presents established and novel devices like Field Effect and Single Electron Transistors, and leads the reader up to applications in data storage, quantum computing, and energy harvesting. Intended to be self-contained for students with two years of calculus-based college physics, with corresponding fundamental knowledge in mathematics, computing and chemistry.


Numerical Methods for Time-Resolved Quantum Nanoelectronics

Numerical Methods for Time-Resolved Quantum Nanoelectronics

Author: Joseph Weston

Publisher: Springer

Published: 2017-08-21

Total Pages: 138

ISBN-13: 331963691X

DOWNLOAD EBOOK

This thesis develops novel numerical techniques for simulating quantum transport in the time domain and applies them to pertinent physical systems such as flying qubits in electronic interferometers and superconductor/semiconductor junctions hosting Majorana bound states (the key ingredient for topological quantum computing). In addition to exploring the rich new physics brought about by time dependence, the thesis also develops software that can be used to simulate nanoelectronic systems with arbitrary geometry and time dependence, offering a veritable toolbox for exploring this rapidly growing domain.


Book Synopsis Numerical Methods for Time-Resolved Quantum Nanoelectronics by : Joseph Weston

Download or read book Numerical Methods for Time-Resolved Quantum Nanoelectronics written by Joseph Weston and published by Springer. This book was released on 2017-08-21 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops novel numerical techniques for simulating quantum transport in the time domain and applies them to pertinent physical systems such as flying qubits in electronic interferometers and superconductor/semiconductor junctions hosting Majorana bound states (the key ingredient for topological quantum computing). In addition to exploring the rich new physics brought about by time dependence, the thesis also develops software that can be used to simulate nanoelectronic systems with arbitrary geometry and time dependence, offering a veritable toolbox for exploring this rapidly growing domain.


Nanoelectronics

Nanoelectronics

Author: Vijay Kumar Arora

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 430

ISBN-13: 1498705766

DOWNLOAD EBOOK

Brings the Band Structure of Carbon-Based Devices into the Limelight A shift to carbon is positioning biology as a process of synthesis in mainstream engineering. Silicon is quickly being replaced with carbon-based electronics, devices are being reduced down to nanometer scale, and further potential applications are being considered. While traditionally, engineers are trained by way of physics, chemistry, and mathematics, Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles establishes biology as an essential basic science for engineers to explore. Unifies Science and Engineering: from Quantum Physics to Nanoengineering Drawing heavily on published papers by the author, this research-driven text offers a complete review of nanoelectronic transport starting from quantum waves, to ohmic and ballistic conduction, and saturation-limited extreme nonequilibrium conditions. In addition, it highlights a new paradigm using non-equilibrium Arora’s Distribution Function (NEADF) and establishes this function as the starting point (from band theory to equilibrium to extreme nonequilibrium carrier statistics). The author focuses on nano-electronic device design and development, including carbon-based devices, and provides you with a vantage point for the global outlook on the future of nanoelectronics devices and ULSI. Encompassing ten chapters, this illuminating text: Converts the electric-field response of drift velocity into current–voltage relationships that are driven by the presence of critical voltage and saturation current arising from the unidirectional drift of carriers Applies the effect of these scaled-down dimensions to nano-MOSFET (metal–oxide–semiconductor field-effect transistor) Considers specialized applications that can be tried through a number of suggested projects that are all feasible with MATLAB® codes Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles contains the latest research in nanoelectronics, identifies problems and other factors to consider when it comes to nanolayer design and application, and ponders future trends. Print Versions of this book also include access to the ebook version.


Book Synopsis Nanoelectronics by : Vijay Kumar Arora

Download or read book Nanoelectronics written by Vijay Kumar Arora and published by CRC Press. This book was released on 2018-10-08 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings the Band Structure of Carbon-Based Devices into the Limelight A shift to carbon is positioning biology as a process of synthesis in mainstream engineering. Silicon is quickly being replaced with carbon-based electronics, devices are being reduced down to nanometer scale, and further potential applications are being considered. While traditionally, engineers are trained by way of physics, chemistry, and mathematics, Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles establishes biology as an essential basic science for engineers to explore. Unifies Science and Engineering: from Quantum Physics to Nanoengineering Drawing heavily on published papers by the author, this research-driven text offers a complete review of nanoelectronic transport starting from quantum waves, to ohmic and ballistic conduction, and saturation-limited extreme nonequilibrium conditions. In addition, it highlights a new paradigm using non-equilibrium Arora’s Distribution Function (NEADF) and establishes this function as the starting point (from band theory to equilibrium to extreme nonequilibrium carrier statistics). The author focuses on nano-electronic device design and development, including carbon-based devices, and provides you with a vantage point for the global outlook on the future of nanoelectronics devices and ULSI. Encompassing ten chapters, this illuminating text: Converts the electric-field response of drift velocity into current–voltage relationships that are driven by the presence of critical voltage and saturation current arising from the unidirectional drift of carriers Applies the effect of these scaled-down dimensions to nano-MOSFET (metal–oxide–semiconductor field-effect transistor) Considers specialized applications that can be tried through a number of suggested projects that are all feasible with MATLAB® codes Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles contains the latest research in nanoelectronics, identifies problems and other factors to consider when it comes to nanolayer design and application, and ponders future trends. Print Versions of this book also include access to the ebook version.


Nanoelectronics and Nanosystems

Nanoelectronics and Nanosystems

Author: Karl Goser

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 304

ISBN-13: 3662054213

DOWNLOAD EBOOK

An accessible introduction for electronic engineers, computer scientists and physicists. The overview covers all aspects from underlying technologies to circuits and systems. The challenge of nanoelectronics is not only to manufacture minute structures but also to develop innovative systems for effective integration of the billions of devices. On the system level, various architectures are presented and important features of systems, such as design strategies, processing power, and reliability are discussed. Many specific technologies are presented, including molecular devices, quantum electronic devices, resonant tunnelling devices, single electron devices, superconducting devices, and even devices for DNA and quantum computing. The book also compares these devices with current silicon technologies and discusses limits of electronics and the future of nanosystems.


Book Synopsis Nanoelectronics and Nanosystems by : Karl Goser

Download or read book Nanoelectronics and Nanosystems written by Karl Goser and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction for electronic engineers, computer scientists and physicists. The overview covers all aspects from underlying technologies to circuits and systems. The challenge of nanoelectronics is not only to manufacture minute structures but also to develop innovative systems for effective integration of the billions of devices. On the system level, various architectures are presented and important features of systems, such as design strategies, processing power, and reliability are discussed. Many specific technologies are presented, including molecular devices, quantum electronic devices, resonant tunnelling devices, single electron devices, superconducting devices, and even devices for DNA and quantum computing. The book also compares these devices with current silicon technologies and discusses limits of electronics and the future of nanosystems.


Quantum Nanoelectronics

Quantum Nanoelectronics

Author: Edward L. Wolf

Publisher: Wiley-VCH

Published: 2009-04-27

Total Pages: 472

ISBN-13: 9783527407491

DOWNLOAD EBOOK

A tutorial coverage of electronic technology, starting from the basics of condensed matter and quantum physics. Experienced author Ed Wolf presents established and novel devices like Field Effect and Single Electron Transistors, and leads the reader up to applications in data storage, quantum computing, and energy harvesting. Intended to be self-contained for students with two years of calculus-based college physics, with corresponding fundamental knowledge in mathematics, computing and chemistry.


Book Synopsis Quantum Nanoelectronics by : Edward L. Wolf

Download or read book Quantum Nanoelectronics written by Edward L. Wolf and published by Wiley-VCH. This book was released on 2009-04-27 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: A tutorial coverage of electronic technology, starting from the basics of condensed matter and quantum physics. Experienced author Ed Wolf presents established and novel devices like Field Effect and Single Electron Transistors, and leads the reader up to applications in data storage, quantum computing, and energy harvesting. Intended to be self-contained for students with two years of calculus-based college physics, with corresponding fundamental knowledge in mathematics, computing and chemistry.


Quantum Mechanics with Applications to Nanotechnology and Information Science

Quantum Mechanics with Applications to Nanotechnology and Information Science

Author: Yehuda B. Band

Publisher: Academic Press

Published: 2013-01-10

Total Pages: 993

ISBN-13: 0444537872

DOWNLOAD EBOOK

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has


Book Synopsis Quantum Mechanics with Applications to Nanotechnology and Information Science by : Yehuda B. Band

Download or read book Quantum Mechanics with Applications to Nanotechnology and Information Science written by Yehuda B. Band and published by Academic Press. This book was released on 2013-01-10 with total page 993 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has


Superlattice to Nanoelectronics

Superlattice to Nanoelectronics

Author: Raphael Tsu

Publisher: Elsevier

Published: 2010-10-22

Total Pages: 346

ISBN-13: 0080968139

DOWNLOAD EBOOK

Written by one of the founders in this field, this edition provides a historical overview of the invention of superlattice, one of the most important devices of the second half of the 20th century. In addition to describing the fundamental concepts, this completely revised and updated edition provides new insights in the field of man-made solids.


Book Synopsis Superlattice to Nanoelectronics by : Raphael Tsu

Download or read book Superlattice to Nanoelectronics written by Raphael Tsu and published by Elsevier. This book was released on 2010-10-22 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the founders in this field, this edition provides a historical overview of the invention of superlattice, one of the most important devices of the second half of the 20th century. In addition to describing the fundamental concepts, this completely revised and updated edition provides new insights in the field of man-made solids.


Advanced Nanoelectronics

Advanced Nanoelectronics

Author: Razali Ismail

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 456

ISBN-13: 1439856818

DOWNLOAD EBOOK

While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.


Book Synopsis Advanced Nanoelectronics by : Razali Ismail

Download or read book Advanced Nanoelectronics written by Razali Ismail and published by CRC Press. This book was released on 2018-09-03 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.


Electronic Conduction

Electronic Conduction

Author: John P. Xanthakis

Publisher: CRC Press

Published: 2020-12-14

Total Pages: 311

ISBN-13: 0429014341

DOWNLOAD EBOOK

Electronic Conduction: Classical and Quantum Theory to Nanoelectronic Devices provides a concise, complete introduction to the fundamental principles of electronic conduction in microelectronic and nanoelectronic devices, with an emphasis on integrating the quantum aspects of conduction. The chapter coverage begins by presenting the classical theory of conduction, including introductory chapters on quantum mechanics and the solid state, then moving to a complete presentation of essential theory for understanding modern electronic devices. The author’s unique approach is applicable to microscale and nanoscale device simulation, which is particularly timely given the explosion in the nanoelectronics field. Features Self-contained Gives a complete account of classical and quantum aspects of conduction in nanometer scale devices Emphasises core principles, the book can be useful to electrical engineers and material scientists, and no prior course in semiconductors is necessary Highlights the bridge to modern electronics, first presenting the physics, and then the engineering complications related to quantum behaviour Includes many clear, illustrative diagrams and chapter problem sets Gives an account of post-Silicon devices such as the GaAs MOSFET, the CNT-FET and the vacuum transistor Showcases why quantum mechanics is necessary with modern devices due to their size and corresponding electron transport properties Discusses all the issues that will enable readers to conduct their own research


Book Synopsis Electronic Conduction by : John P. Xanthakis

Download or read book Electronic Conduction written by John P. Xanthakis and published by CRC Press. This book was released on 2020-12-14 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic Conduction: Classical and Quantum Theory to Nanoelectronic Devices provides a concise, complete introduction to the fundamental principles of electronic conduction in microelectronic and nanoelectronic devices, with an emphasis on integrating the quantum aspects of conduction. The chapter coverage begins by presenting the classical theory of conduction, including introductory chapters on quantum mechanics and the solid state, then moving to a complete presentation of essential theory for understanding modern electronic devices. The author’s unique approach is applicable to microscale and nanoscale device simulation, which is particularly timely given the explosion in the nanoelectronics field. Features Self-contained Gives a complete account of classical and quantum aspects of conduction in nanometer scale devices Emphasises core principles, the book can be useful to electrical engineers and material scientists, and no prior course in semiconductors is necessary Highlights the bridge to modern electronics, first presenting the physics, and then the engineering complications related to quantum behaviour Includes many clear, illustrative diagrams and chapter problem sets Gives an account of post-Silicon devices such as the GaAs MOSFET, the CNT-FET and the vacuum transistor Showcases why quantum mechanics is necessary with modern devices due to their size and corresponding electron transport properties Discusses all the issues that will enable readers to conduct their own research


Advanced Nanoelectronics

Advanced Nanoelectronics

Author: Razali Ismail

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 459

ISBN-13: 1351833073

DOWNLOAD EBOOK

While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.


Book Synopsis Advanced Nanoelectronics by : Razali Ismail

Download or read book Advanced Nanoelectronics written by Razali Ismail and published by CRC Press. This book was released on 2018-09-03 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.